The state of cutting tool determines the quality of surface produced on the machined parts.A faulty tool produces poor sur face,inaccurate geometry and non-economic production.Thus,it is necessary to monitor tool cond...The state of cutting tool determines the quality of surface produced on the machined parts.A faulty tool produces poor sur face,inaccurate geometry and non-economic production.Thus,it is necessary to monitor tool condition for a.machining process to have superior quality and economic production.In the pre-sent study,fault classification of single point cutting tool for hard turning has been carried out by employing machine learning technique.Cutting force and vibration signals were acquired to monitor tool condition during machining.A set of four tooling conditions namely healthy,worn flank,broken insert and extended tool overhang have been considered for the study.The machine learning technique was applied to both vibration and cutting force signals.Discrete wavelet features of the signals have been extracted using discrete wavelet trans formation(DWT).This transformation represents a large dataset into approximation coeffcients which contain the most useful information of the dataset.Significant features,among features extracted,were selected using J48 decision tree technique.Clas-sification of tool conditions was carried out us ing Naive Bayes algorithm.A 10 fold cross validation was incorporated to test the validity of classifier.A comparison of performance of classifier was made between cutting force and vibration signal to choose the best signal acquisition method in classifying tool fault conditions using machine learning technique.展开更多
Naive Bayes(NB) is one of the most popular classification methods. It is particularly useful when the dimension of the predictor is high and data are generated independently. In the meanwhile, social network data are ...Naive Bayes(NB) is one of the most popular classification methods. It is particularly useful when the dimension of the predictor is high and data are generated independently. In the meanwhile, social network data are becoming increasingly accessible, due to the fast development of various social network services and websites. By contrast, data generated by a social network are most likely to be dependent. The dependency is mainly determined by their social network relationships. Then, how to extend the classical NB method to social network data becomes a problem of great interest. To this end, we propose here a network-based naive Bayes(NNB) method, which generalizes the classical NB model to social network data. The key advantage of the NNB method is that it takes the network relationships into consideration. The computational efficiency makes the NNB method even feasible in large scale social networks. The statistical properties of the NNB model are theoretically investigated. Simulation studies have been conducted to demonstrate its finite sample performance.A real data example is also analyzed for illustration purpose.展开更多
文摘The state of cutting tool determines the quality of surface produced on the machined parts.A faulty tool produces poor sur face,inaccurate geometry and non-economic production.Thus,it is necessary to monitor tool condition for a.machining process to have superior quality and economic production.In the pre-sent study,fault classification of single point cutting tool for hard turning has been carried out by employing machine learning technique.Cutting force and vibration signals were acquired to monitor tool condition during machining.A set of four tooling conditions namely healthy,worn flank,broken insert and extended tool overhang have been considered for the study.The machine learning technique was applied to both vibration and cutting force signals.Discrete wavelet features of the signals have been extracted using discrete wavelet trans formation(DWT).This transformation represents a large dataset into approximation coeffcients which contain the most useful information of the dataset.Significant features,among features extracted,were selected using J48 decision tree technique.Clas-sification of tool conditions was carried out us ing Naive Bayes algorithm.A 10 fold cross validation was incorporated to test the validity of classifier.A comparison of performance of classifier was made between cutting force and vibration signal to choose the best signal acquisition method in classifying tool fault conditions using machine learning technique.
基金supported by National Natural Science Foundation of China (Grant Nos. 11701560, 11501093, 11631003, 11690012, 71532001 and 11525101)the Fundamental Research Funds for the Central Universities+5 种基金the Fundamental Research Funds for the Central Universities (Grant Nos. 130028613, 130028729 and 2412017FZ030)the Research Funds of Renmin University of China (Grant No. 16XNLF01)the Beijing Municipal Social Science Foundation (Grant No. 17GLC051)Fund for Building World-Class Universities (Disciplines) of Renmin University of ChinaChina’s National Key Research Special Program (Grant No. 2016YFC0207700)Center for Statistical Science at Peking University
文摘Naive Bayes(NB) is one of the most popular classification methods. It is particularly useful when the dimension of the predictor is high and data are generated independently. In the meanwhile, social network data are becoming increasingly accessible, due to the fast development of various social network services and websites. By contrast, data generated by a social network are most likely to be dependent. The dependency is mainly determined by their social network relationships. Then, how to extend the classical NB method to social network data becomes a problem of great interest. To this end, we propose here a network-based naive Bayes(NNB) method, which generalizes the classical NB model to social network data. The key advantage of the NNB method is that it takes the network relationships into consideration. The computational efficiency makes the NNB method even feasible in large scale social networks. The statistical properties of the NNB model are theoretically investigated. Simulation studies have been conducted to demonstrate its finite sample performance.A real data example is also analyzed for illustration purpose.