In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in ...In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes.展开更多
By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and ...By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and reliably access DistributedGenerator(DG)and Energy Storage Systems(ESS),exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play(PnP)operations.However,during device plug-in and-out processes,improper systemparametersmay lead to small-signal stability issues.Therefore,before executing PnP operations,conducting stability analysis and adjusting parameters swiftly is crucial.This study introduces a four-stage strategy for parameter optimization to enhance systemstability efficiently.In the first stage,state-of-the-art technologies in measurement and communication are utilized to correct model parameters.Then,a novel indicator is adopted to identify the key parameters that influence stability in the second stage.Moreover,in the third stage,a local-parameter-tuning strategy,which leverages rapid parameter boundary calculations as a more efficient alternative to plotting root loci,is used to tune the selected parameters.Considering that the local-parameter-tuning strategy may fail due to some operating parameters being limited in adjustment,a multiparameter-tuning strategy based on the particle swarm optimization(PSO)is proposed to comprehensively adjust the dominant parameters to improve the stability margin of the system.Lastly,system stability is reassessed in the fourth stage.The proposed parameter-optimization strategy’s effectiveness has been validated through eigenvalue analysis and nonlinear time-domain simulations.展开更多
Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requir...Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.展开更多
Multiple tuned mass dampers(MTMDs)reduce dynamic response with multiple specified frequencies of building structures.Many optimization algorithms for placement design exist,though they rarely conform to code-based ver...Multiple tuned mass dampers(MTMDs)reduce dynamic response with multiple specified frequencies of building structures.Many optimization algorithms for placement design exist,though they rarely conform to code-based verification nor produce high quality solutions without high computational effort and high complexity.This study proposes an inverse element exchange method(IEEM)with multi-level programming and compares it to a single tuned mass damper(STMD)and uniform distribution of multiple tuned mass dampers in the frequency and time domains.A ten-story shear building is used for the numerical case study.The results show that the proposed method can offer improvement over the STMD,uniform distribution of multiple tuned mass dampers,and distribution optimized by genetic algorithms(GA)with regard to minimizing the interstory drift ratio(IDR)in both the frequency and time domains and the time consumption for optimization.展开更多
In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 n...In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 neurons induced by a weak noise relative to 5 dB below minimum threshold of tone (reMT-5 dB) under free field stimulation conditions.The results were as follows:① There were three types of variations in FTCs,sharpened (34.4%),broadened (18.8%),and unaffected (46.9%),nevertheless,only the alteration of sharpened FTCs was statistically different.② Sharpness of frequency tuning induced by a reMT-5 dB noise was very strong.Q 10 and Q 30 of FTCs were increased by (34.42±17.04)% (P=0.026,n=11) and (46.34±22.88)% (P=0.009,n=7).③ The changes of inverse-slopes (ISs,kHz/dB) between high (IS high) and low (IS low) limbs of FTCs were dissymmetry.The IS high of FTCs decreased markedly (P=0.046,n=7),however,there was little change (P=0.947,n=7) in IS low.Our data revealed for the first time that the weak noise could sharpen frequency tuning and increase the sensitivity on the high frequency of sound signal in IC neurons of mouse.展开更多
The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten ...The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten the period of development. Thus the vibratory characteristics of the gyroscope is simulated with the finite element method of coupled field. The optimum exciting frequency and the factors which influence the gyroscope sensitivity are determined. The method for adjusting the frequency deviation between driving and detecting modes is also proposed.展开更多
The textural features and acidic properties of sulfated mesoporous lanthana‐zirconia solid acids (SO42?/meso‐La0.1Zr0.9Oδ) were efficiently tuned by modifying the conditions used to prepare the meso‐La0.1Zr0.9O...The textural features and acidic properties of sulfated mesoporous lanthana‐zirconia solid acids (SO42?/meso‐La0.1Zr0.9Oδ) were efficiently tuned by modifying the conditions used to prepare the meso‐La0.1Zr0.9Oδcomposites, such as the molar ratio of the template to La and Zr metal ions (Nt/m), molar ratio of ammonia to La and Zr metal ions (Na/m), hydrothermal temperature (Thydro), and hy‐drothermal time (thydro). The effect of the textural features and acidic properties on the catalytic performance of solid acid catalysts for alkenylation of p‐xylene with phenylacetylene was investi‐gated. Various characterization techniques such as N2 physisorption, X‐ray diffraction, NH3 temper‐ature‐programmed desorption, and thermogravimetric analysis were employed to reveal the rela‐tionship between the nature of catalyst and its catalytic performance. It was found that the catalytic performance significantly depended on the textural features and acidic properties, which were strongly affected by preparation conditions of the meso‐La0.1Zr0.9Oδcomposite. Appropriate acidic sites and high accessibility were required to obtain satisfactory catalytic reactions for this reaction. It was also found that the average crystallite size of t‐ZrO2 affected by the preparation conditions had significant influence on the ultrastrong acidic sites of the catalysts. The optimized SO42?/meso‐La0.1Zr0.9Oδcatalyst exhibited much superior catalytic activity and coke‐resistant stabil‐ity. Moreover, the developed SO42?/meso‐La0.1Zr0.9Oδcatalyst demonstrated excellent catalytic per‐formance for alkenylation of diverse aromatics with phenylacetylene to their correspondingα‐arylstyrenes. Combining the previously established complete regeneration of used catalysts by a facile calcination process with the improved catalytic properties, the developed SO42?/meso‐La0.1Zr0.9Oδ solid acid could be a potential catalyst for industrial production ofα‐arylstyrenes through clean and atom efficient solid‐acid‐mediated Friedel‐Crafts alkenylation of diverse aromatics with phenylacetylene.展开更多
This paper presents the optimal design procedure of Tuned Mass Damper (TMD) for reducing vibration of an actual steel jacket offshore platform excited by random wave loading. In this study, a frequency domain is taken...This paper presents the optimal design procedure of Tuned Mass Damper (TMD) for reducing vibration of an actual steel jacket offshore platform excited by random wave loading. In this study, a frequency domain is taken. The force on the structure is determined by use of the linearized Morison equation for an input Power Spectral Density (PSD) of wave elevation. The sensitivity of optimum values of TMD to characteristic parameters of random wave spectrum is analyzed. An optimized TMD design for the modeled platform is given based on design conditions and the findings of the study.展开更多
The tuned mass damper(TMD) has been successfully applied to the vibration control in machining, while the most widely adopted tuning is equal peaks, which splits the magnitude of the frequency response function(FRF...The tuned mass damper(TMD) has been successfully applied to the vibration control in machining, while the most widely adopted tuning is equal peaks, which splits the magnitude of the frequency response function(FRF) into equal peaks. However, chatter is a special self-excited problem and a chatter-flee machining is determined by FRF at the cutting zone. A TMD tuning aiming at achieving the maximum chatter stability is studied, and it is formulated as an optimization problem of maximizing the minimum negative real part of FRF. By employing the steepest descend method, the optimum frequency and damping ratio of TMD are obtained, and they are compared against the equal peaks tuning. The advantage of the proposed tuning is demonstrated numerically by comparing the minimum point of the negative real part, and is further verified by damping a flexible mode from the fixture of a turning machine. A TMD is designed and placed on the fixture along the vibration of the target mode after performing modal analysis and mode shape visualization. Both of the above two ttmings are applied to modify the tool point FRF by tuning TMD respectively. Chatter stability chart of the turning shows that the proposed tuning can increase the critical depth of cut 37% more than the equal peaks. Cutting tests with an increasing depth of cut are conducted on the turning machine in order to distinguish the stability limit. The tool vibrations during the machining are compared to validate the simulation results. The proposed damping design and optimization routine are able to further increase the chatter suppression effect.展开更多
It is pointed out in this paper that the offshore platform could be controlled by means of the Tuned Mass Damper (TMD) if there is torsional vibration in the system. The effectiveness of the location of TMD is quantif...It is pointed out in this paper that the offshore platform could be controlled by means of the Tuned Mass Damper (TMD) if there is torsional vibration in the system. The effectiveness of the location of TMD is quantified with the help of the response ratio between the peak responses of the system in the presence and in the absence of TMD. In addition, the parameters of frequency and damping ratio of TMD are optimized.展开更多
In the Ziegler-Nichols' s method of reaction curve,the proportional gain should be calculated as an inverse relation of the plant steady-state gain. One of the reasons behind this is to avoid an excessively high l...In the Ziegler-Nichols' s method of reaction curve,the proportional gain should be calculated as an inverse relation of the plant steady-state gain. One of the reasons behind this is to avoid an excessively high loop gain, which can jeopardize many required characteristics of the closed loop. However, many reports, scientific papers and books have been neglecting such gain compensation in the tuning formulae.This brief presents a comprehensive discussion about such uncompensated tuning rules. The main paper finding is that either the stability margin or the disturbance rejection is reduced in this case. A theoretical analysis is performed to obtain the main result. Moreover, a consistent simulation study is also performed to show the impact of the lack of compensation on performance.展开更多
The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column...The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.展开更多
Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed f...Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed for design of a TMD with nonlinear viscous damping. A dynamic analysis of a structure implemented with a nonlinear TMD is conducted first. Optimum design parameters for the nonlinear TMD are searched using an optimization method to minimize the performance index. The feasibility of the proposed optimization method is illustrated numerically by using the Taipei 101 structure implemented with TMD. The sensitivity analysis shows that the performance index is less sensitive to the damping coefficient than to the frequency ratio. Time history analysis is conducted using the Taipei 101 structure implemented with different TMDs under wind excitation. For both linear and nonlinear TMDs, the comfort requirements for building occupants are satisfied as long as the TMD is properly designed. It was found that as the damping exponent increases, the relative displacement of the TMD decreases but the damping force increases.展开更多
Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point a...Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point absorbers, as a renewable energy device, have achieved a rapid development. Heave plate is used to constrain the truss’ s motion in the two-body point absorber, and the floater moves along the truss up and down. This two-body point absorber can be considered to be an essentially mass-spring-damper system. And it is well known that the heave plates have been widely used in the Spar platform to suppress the heave motions. So if the two-body point absorber can be modified to combine with offshore floating structures, this system can not only offer electric power to support operations or daily lives for the platform, but also control the large motions in the vertical plane. Following this concept, a novel tuned heave plate(THP) system is proposed for the conventional semi-submersible platform. In order to investigate the dynamic performances of the single THP, two experiments are conducted in this paper. First, the hydrodynamic coefficients of the heave plates are studied, and then the THP experiments are carried out to analyze its dynamic performance. It can be concluded that this THP is feasible and achieves the design objective.展开更多
a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic...a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic algorithms, namely rapid convergence and attainment of the global optimum. Utilization of an orthogonal experiment method solves the determination of the genetic factors. Combination with an expert system can make best use of the actual experience of the plant operators. Simulation results of typical process systems examples show a good control performance and robustness.展开更多
This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and in...This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and industry during recent years because of their inherent safety in human interaction.However,due to structural flexibility and compliance,mathematical models for these soft robots are nonlinear with an infinite degree of freedom(DOF).Therefore,accurate position(or orientation)control and optimization of their dynamic response remains a challenging task.Most existing soft robots currently employed in industrial and rehabilitation applications use model-free control algorithms such as PID.However,to the best of our knowledge,there has been no systematic study on the comparative performance of model-free control algorithms and their ability to optimize dynamic response,i.e.,reduce overshoot and settling time.In this paper,we present comparative performance of several variants of model-free PID-controllers based on extensive experimental results.Additionally,most of the existing work on modelfree control in pneumatic soft-robotic literature use manually tuned parameters,which is a time-consuming,labor-intensive task.We present a heuristic-based coordinate descent algorithm to tune the controller parameter automatically.We presented results for both manual tuning and automatic tuning using the Ziegler-Nichols method and proposed algorithm,respectively.We then used experimental results to statistically demonstrate that the presented automatic tuning algorithm results in high accuracy.The experiment results show that for soft robots,the PID-controller essentially reduces to the PI controller.This behavior was observed in both manual and automatic tuning experiments;we also discussed a rationale for removing the derivative term.展开更多
The IMC(Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Max...The IMC(Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Maximum Sensitivity(Ms) in depth.And the analytical relationship is obtained between the robustness specification and controller parameters,which gives a clear design criterion to robust IMC controller.Moreover,a novel and simple IMC-PID(Proportional-Integral-Derivative) tuning method is proposed by converting the IMC controller to PID form in terms of the time domain rather than the frequency domain adopted in some conventional IMC-based methods.Hence,the presented IMC-PID gives a good performance with a specific robustness degree.The new IMC-PID method is compared with other classical IMC-PID rules,showing the flexibility and feasibility for a wide range of plants.展开更多
This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the pre...This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.展开更多
A heavy rainfall case related to Mesoscale Convective Systems (MCSs) over the Korean Peninsula was selected to investigate the impact of radar data assimilation on a heavy rainfall forecast. The Weather Research and...A heavy rainfall case related to Mesoscale Convective Systems (MCSs) over the Korean Peninsula was selected to investigate the impact of radar data assimilation on a heavy rainfall forecast. The Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) data assimilation system with tuning of the length scale of the background error covariance and observation error parameters was used to assimilate radar radial velocity and reffectivity data. The radar data used in the assimilation experiments were preprocessed using quality-control procedures and interpolated/thinned into Cartesian coordinates by the SPRINT/CEDRIC packages. Sensitivity experiments were carried out in order to determine the optimal values of the assimilation window length and the update frequency used for the rapid update cycle and incremental analysis update experiments. The assimilation of radar data has a positive influence on the heavy rainfall forecast. Quantitative features of the heavy rainfall case, such as the maximum rainfall amount and Root Mean Squared Differences (RMSDs) of zonal/meridional wind components, were improved by tuning of the length scale and observation error parameters. Qualitative features of the case, such as the maximum rainfall position and time series of hourly rainfall, were enhanced by an incremental analysis update technique. The positive effects of the radar data assimilation and the tuning of the length scale and observation error parameters were clearly shown by the 3DVAR increment.展开更多
In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dyn...In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal(using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.展开更多
基金This research was funded by the Natural Science Research Project of Higher Education Institutions in Anhui Province(Grant No.2022AH040045)the Anhui Provincial Natural Science Foundation(Grant No.2008085QE245)the Project of Science and Technology Plan of Department of Housing and Urban-Rural Development of Anhui Province(Grant No.2021-YF22).
文摘In order to improve the seismic performance of adjacent buildings,two types of tuned inerter damper(TID)damping systems for adjacent buildings are proposed,which are composed of springs,inerter devices and dampers in serial or in parallel.The dynamic equations of TID adjacent building damping systems were derived,and the H2 norm criterion was used to optimize and adjust them,so that the system had the optimum damping performance under white noise random excitation.Taking TID frequency ratio and damping ratio as optimization parameters,the optimum analytical solutions of the displacement frequency response of the undamped structure under white noise excitation were obtained.The results showed that compared with the classic TMD,TID could obtain a better damping effect in the adjacent buildings.Comparing the TIDs composed of serial or parallel,it was found that the parallel TIDs had more significant advantages in controlling the peak displacement frequency response,while the H2 norm of the displacement frequency response of the damping system under the coupling of serial TID was smaller.Taking the adjacent building composed of two ten-story frame structures as an example,the displacement and energy collection time history analysis of the adjacent building coupled with the optimum design parameter TIDs were carried out.It was found that TID had a better damping effect in the full-time range compared with the classic TMD.This paper also studied the potential power of TID in adjacent buildings,which can be converted into available power resources during earthquakes.
基金supported by State Grid Information and Telecommunication Group Scientific and Technological Innovation Project“Research on Power Digital Space Technology System and Key Technologies”(Program No.SGIT0000XMJS2310456).
文摘By integrating advanced digital technologies such as cloud computing and the Internet of Things in sensor measurement,information communication,and other fields,the digital DC distribution network can efficiently and reliably access DistributedGenerator(DG)and Energy Storage Systems(ESS),exhibiting significant advantages in terms of controllability and meeting requirements of Plug-and-Play(PnP)operations.However,during device plug-in and-out processes,improper systemparametersmay lead to small-signal stability issues.Therefore,before executing PnP operations,conducting stability analysis and adjusting parameters swiftly is crucial.This study introduces a four-stage strategy for parameter optimization to enhance systemstability efficiently.In the first stage,state-of-the-art technologies in measurement and communication are utilized to correct model parameters.Then,a novel indicator is adopted to identify the key parameters that influence stability in the second stage.Moreover,in the third stage,a local-parameter-tuning strategy,which leverages rapid parameter boundary calculations as a more efficient alternative to plotting root loci,is used to tune the selected parameters.Considering that the local-parameter-tuning strategy may fail due to some operating parameters being limited in adjustment,a multiparameter-tuning strategy based on the particle swarm optimization(PSO)is proposed to comprehensively adjust the dominant parameters to improve the stability margin of the system.Lastly,system stability is reassessed in the fourth stage.The proposed parameter-optimization strategy’s effectiveness has been validated through eigenvalue analysis and nonlinear time-domain simulations.
文摘Sentence classification is the process of categorizing a sentence based on the context of the sentence.Sentence categorization requires more semantic highlights than other tasks,such as dependence parsing,which requires more syntactic elements.Most existing strategies focus on the general semantics of a conversation without involving the context of the sentence,recognizing the progress and comparing impacts.An ensemble pre-trained language model was taken up here to classify the conversation sentences from the conversation corpus.The conversational sentences are classified into four categories:information,question,directive,and commission.These classification label sequences are for analyzing the conversation progress and predicting the pecking order of the conversation.Ensemble of Bidirectional Encoder for Representation of Transformer(BERT),Robustly Optimized BERT pretraining Approach(RoBERTa),Generative Pre-Trained Transformer(GPT),DistilBERT and Generalized Autoregressive Pretraining for Language Understanding(XLNet)models are trained on conversation corpus with hyperparameters.Hyperparameter tuning approach is carried out for better performance on sentence classification.This Ensemble of Pre-trained Language Models with a Hyperparameter Tuning(EPLM-HT)system is trained on an annotated conversation dataset.The proposed approach outperformed compared to the base BERT,GPT,DistilBERT and XLNet transformer models.The proposed ensemble model with the fine-tuned parameters achieved an F1_score of 0.88.
文摘Multiple tuned mass dampers(MTMDs)reduce dynamic response with multiple specified frequencies of building structures.Many optimization algorithms for placement design exist,though they rarely conform to code-based verification nor produce high quality solutions without high computational effort and high complexity.This study proposes an inverse element exchange method(IEEM)with multi-level programming and compares it to a single tuned mass damper(STMD)and uniform distribution of multiple tuned mass dampers in the frequency and time domains.A ten-story shear building is used for the numerical case study.The results show that the proposed method can offer improvement over the STMD,uniform distribution of multiple tuned mass dampers,and distribution optimized by genetic algorithms(GA)with regard to minimizing the interstory drift ratio(IDR)in both the frequency and time domains and the time consumption for optimization.
文摘In order to study the effect of weak noise on the sound signal extraction of mouse (Mus musculus Km) inferior collicular (IC) neurons from environments,we examined the changes in frequency tuning curves (FTCs) of 32 neurons induced by a weak noise relative to 5 dB below minimum threshold of tone (reMT-5 dB) under free field stimulation conditions.The results were as follows:① There were three types of variations in FTCs,sharpened (34.4%),broadened (18.8%),and unaffected (46.9%),nevertheless,only the alteration of sharpened FTCs was statistically different.② Sharpness of frequency tuning induced by a reMT-5 dB noise was very strong.Q 10 and Q 30 of FTCs were increased by (34.42±17.04)% (P=0.026,n=11) and (46.34±22.88)% (P=0.009,n=7).③ The changes of inverse-slopes (ISs,kHz/dB) between high (IS high) and low (IS low) limbs of FTCs were dissymmetry.The IS high of FTCs decreased markedly (P=0.046,n=7),however,there was little change (P=0.947,n=7) in IS low.Our data revealed for the first time that the weak noise could sharpen frequency tuning and increase the sensitivity on the high frequency of sound signal in IC neurons of mouse.
文摘The micro quartz crystal tuning fork gyroscope is a new type of vibratory gyroscope. The gyroscope should be analyzed and simulated early in the design stage in order to offer reliable basis for design and to shorten the period of development. Thus the vibratory characteristics of the gyroscope is simulated with the finite element method of coupled field. The optimum exciting frequency and the factors which influence the gyroscope sensitivity are determined. The method for adjusting the frequency deviation between driving and detecting modes is also proposed.
基金financially supported by the National Natural Science Foundation of China (21276041)the Program for New Century Excellent Talents in University of Ministry of Education (NCET-12-0079)+1 种基金the Natural Science Foundation of Liaoning Province (2015020200)the Fundamental Research Funds for the Central Universities (DUT15LK41)~~
文摘The textural features and acidic properties of sulfated mesoporous lanthana‐zirconia solid acids (SO42?/meso‐La0.1Zr0.9Oδ) were efficiently tuned by modifying the conditions used to prepare the meso‐La0.1Zr0.9Oδcomposites, such as the molar ratio of the template to La and Zr metal ions (Nt/m), molar ratio of ammonia to La and Zr metal ions (Na/m), hydrothermal temperature (Thydro), and hy‐drothermal time (thydro). The effect of the textural features and acidic properties on the catalytic performance of solid acid catalysts for alkenylation of p‐xylene with phenylacetylene was investi‐gated. Various characterization techniques such as N2 physisorption, X‐ray diffraction, NH3 temper‐ature‐programmed desorption, and thermogravimetric analysis were employed to reveal the rela‐tionship between the nature of catalyst and its catalytic performance. It was found that the catalytic performance significantly depended on the textural features and acidic properties, which were strongly affected by preparation conditions of the meso‐La0.1Zr0.9Oδcomposite. Appropriate acidic sites and high accessibility were required to obtain satisfactory catalytic reactions for this reaction. It was also found that the average crystallite size of t‐ZrO2 affected by the preparation conditions had significant influence on the ultrastrong acidic sites of the catalysts. The optimized SO42?/meso‐La0.1Zr0.9Oδcatalyst exhibited much superior catalytic activity and coke‐resistant stabil‐ity. Moreover, the developed SO42?/meso‐La0.1Zr0.9Oδcatalyst demonstrated excellent catalytic per‐formance for alkenylation of diverse aromatics with phenylacetylene to their correspondingα‐arylstyrenes. Combining the previously established complete regeneration of used catalysts by a facile calcination process with the improved catalytic properties, the developed SO42?/meso‐La0.1Zr0.9Oδ solid acid could be a potential catalyst for industrial production ofα‐arylstyrenes through clean and atom efficient solid‐acid‐mediated Friedel‐Crafts alkenylation of diverse aromatics with phenylacetylene.
基金National Natural Foundation of China.(Grant No.69572015)
文摘This paper presents the optimal design procedure of Tuned Mass Damper (TMD) for reducing vibration of an actual steel jacket offshore platform excited by random wave loading. In this study, a frequency domain is taken. The force on the structure is determined by use of the linearized Morison equation for an input Power Spectral Density (PSD) of wave elevation. The sensitivity of optimum values of TMD to characteristic parameters of random wave spectrum is analyzed. An optimized TMD design for the modeled platform is given based on design conditions and the findings of the study.
基金supported by National Technology Support Program of China (Grant No. 2006BAF01B09)Doctoral Foundation of Ministry of Education of China (Grant No. 200800060010)+1 种基金Beijing Municipal Key Laboratory Project of Chinasupport from the Manufacturing Automation Laboratory(MAL) of the University of British Columbia
文摘The tuned mass damper(TMD) has been successfully applied to the vibration control in machining, while the most widely adopted tuning is equal peaks, which splits the magnitude of the frequency response function(FRF) into equal peaks. However, chatter is a special self-excited problem and a chatter-flee machining is determined by FRF at the cutting zone. A TMD tuning aiming at achieving the maximum chatter stability is studied, and it is formulated as an optimization problem of maximizing the minimum negative real part of FRF. By employing the steepest descend method, the optimum frequency and damping ratio of TMD are obtained, and they are compared against the equal peaks tuning. The advantage of the proposed tuning is demonstrated numerically by comparing the minimum point of the negative real part, and is further verified by damping a flexible mode from the fixture of a turning machine. A TMD is designed and placed on the fixture along the vibration of the target mode after performing modal analysis and mode shape visualization. Both of the above two ttmings are applied to modify the tool point FRF by tuning TMD respectively. Chatter stability chart of the turning shows that the proposed tuning can increase the critical depth of cut 37% more than the equal peaks. Cutting tests with an increasing depth of cut are conducted on the turning machine in order to distinguish the stability limit. The tool vibrations during the machining are compared to validate the simulation results. The proposed damping design and optimization routine are able to further increase the chatter suppression effect.
文摘It is pointed out in this paper that the offshore platform could be controlled by means of the Tuned Mass Damper (TMD) if there is torsional vibration in the system. The effectiveness of the location of TMD is quantified with the help of the response ratio between the peak responses of the system in the presence and in the absence of TMD. In addition, the parameters of frequency and damping ratio of TMD are optimized.
文摘In the Ziegler-Nichols' s method of reaction curve,the proportional gain should be calculated as an inverse relation of the plant steady-state gain. One of the reasons behind this is to avoid an excessively high loop gain, which can jeopardize many required characteristics of the closed loop. However, many reports, scientific papers and books have been neglecting such gain compensation in the tuning formulae.This brief presents a comprehensive discussion about such uncompensated tuning rules. The main paper finding is that either the stability margin or the disturbance rejection is reduced in this case. A theoretical analysis is performed to obtain the main result. Moreover, a consistent simulation study is also performed to show the impact of the lack of compensation on performance.
文摘The main intention of the present study is to reduce wind, wave, and seismic induced vibrations of jacket- type offshore wind turbines (JOWTs) through a newly developed vibration absorber, called tuned liquid column gas damper (TLCGD). Using a Simulink-based model, an analytical model is developed to simulate global behavior of JOWTs under different dynamic excitations. The study is followed by a parametric study to explore efficiency of the TLCGD in terms of nacelle acceleration reduction under wind, wave, and earthquake loads. Study results indicate that optimum frequency of the TLCGD is rather insensitive to excitation type. In addition, while the gain in vibration control from TLCGDs with higher mass ratios is generally more pronounced, heavy TLCGDs are more sensitive to their tuned frequency such that ill-regulated TLCGD with high mass ratio can lead to destructive results. It is revealed that a well regulated TLCGD has noticeable contribution to the dynamic response of the JOWT under any excitation.
文摘Optimal design theory for linear tuned mass dampers (TMD) has been thoroughly investigated, but is still under development for nonlinear TMDs. In this paper, optimization procedures in the time domain are proposed for design of a TMD with nonlinear viscous damping. A dynamic analysis of a structure implemented with a nonlinear TMD is conducted first. Optimum design parameters for the nonlinear TMD are searched using an optimization method to minimize the performance index. The feasibility of the proposed optimization method is illustrated numerically by using the Taipei 101 structure implemented with TMD. The sensitivity analysis shows that the performance index is less sensitive to the damping coefficient than to the frequency ratio. Time history analysis is conducted using the Taipei 101 structure implemented with different TMDs under wind excitation. For both linear and nonlinear TMDs, the comfort requirements for building occupants are satisfied as long as the TMD is properly designed. It was found that as the damping exponent increases, the relative displacement of the TMD decreases but the damping force increases.
基金financially supported by the Fundamental Research Program of Shandong Province(Grant No.ZR2016EEQ23)the Youth Exploration Project of Shandong Province Mount Tai Scholar Advanced Disciplinary Talent Group
文摘Logistical supply is costly for the deepwater oil and gas exploitation, thereby it is necessary to develop a novel power supply solution to improve the offshore structure’s self-holding capacity. The two-body point absorbers, as a renewable energy device, have achieved a rapid development. Heave plate is used to constrain the truss’ s motion in the two-body point absorber, and the floater moves along the truss up and down. This two-body point absorber can be considered to be an essentially mass-spring-damper system. And it is well known that the heave plates have been widely used in the Spar platform to suppress the heave motions. So if the two-body point absorber can be modified to combine with offshore floating structures, this system can not only offer electric power to support operations or daily lives for the platform, but also control the large motions in the vertical plane. Following this concept, a novel tuned heave plate(THP) system is proposed for the conventional semi-submersible platform. In order to investigate the dynamic performances of the single THP, two experiments are conducted in this paper. First, the hydrodynamic coefficients of the heave plates are studied, and then the THP experiments are carried out to analyze its dynamic performance. It can be concluded that this THP is feasible and achieves the design objective.
文摘a new strategy combining an expert system and improved genetic algorithms is presented for tuning proportional-integral-derivative (PID) parameters for petrochemical processes. This retains the advantages of genetic algorithms, namely rapid convergence and attainment of the global optimum. Utilization of an orthogonal experiment method solves the determination of the genetic factors. Combination with an expert system can make best use of the actual experience of the plant operators. Simulation results of typical process systems examples show a good control performance and robustness.
文摘This paper presents an experimental study to compare the performance of model-free control strategies for pneumatic soft robots.Fabricated using soft materials,soft robots have gained much attention in academia and industry during recent years because of their inherent safety in human interaction.However,due to structural flexibility and compliance,mathematical models for these soft robots are nonlinear with an infinite degree of freedom(DOF).Therefore,accurate position(or orientation)control and optimization of their dynamic response remains a challenging task.Most existing soft robots currently employed in industrial and rehabilitation applications use model-free control algorithms such as PID.However,to the best of our knowledge,there has been no systematic study on the comparative performance of model-free control algorithms and their ability to optimize dynamic response,i.e.,reduce overshoot and settling time.In this paper,we present comparative performance of several variants of model-free PID-controllers based on extensive experimental results.Additionally,most of the existing work on modelfree control in pneumatic soft-robotic literature use manually tuned parameters,which is a time-consuming,labor-intensive task.We present a heuristic-based coordinate descent algorithm to tune the controller parameter automatically.We presented results for both manual tuning and automatic tuning using the Ziegler-Nichols method and proposed algorithm,respectively.We then used experimental results to statistically demonstrate that the presented automatic tuning algorithm results in high accuracy.The experiment results show that for soft robots,the PID-controller essentially reduces to the PI controller.This behavior was observed in both manual and automatic tuning experiments;we also discussed a rationale for removing the derivative term.
基金Supported by the National Natural Science Foundation of China(61273132)Doctoral Fund of Ministry of Education of China(20110010110010)
文摘The IMC(Internal Model Control) controller based on robust tuning can improve the robustness and dynamic performance of the system.In this paper,the robustness degree of the control system is investigated based on Maximum Sensitivity(Ms) in depth.And the analytical relationship is obtained between the robustness specification and controller parameters,which gives a clear design criterion to robust IMC controller.Moreover,a novel and simple IMC-PID(Proportional-Integral-Derivative) tuning method is proposed by converting the IMC controller to PID form in terms of the time domain rather than the frequency domain adopted in some conventional IMC-based methods.Hence,the presented IMC-PID gives a good performance with a specific robustness degree.The new IMC-PID method is compared with other classical IMC-PID rules,showing the flexibility and feasibility for a wide range of plants.
文摘This paper describes a real-time beam tuning method with an improved asynchronous advantage actor–critic(A3C)algorithm for accelerator systems.The operating parameters of devices are usually inconsistent with the predictions of physical designs because of errors in mechanical matching and installation.Therefore,parameter optimization methods such as pointwise scanning,evolutionary algorithms(EAs),and robust conjugate direction search are widely used in beam tuning to compensate for this inconsistency.However,it is difficult for them to deal with a large number of discrete local optima.The A3C algorithm,which has been applied in the automated control field,provides an approach for improving multi-dimensional optimization.The A3C algorithm is introduced and improved for the real-time beam tuning code for accelerators.Experiments in which optimization is achieved by using pointwise scanning,the genetic algorithm(one kind of EAs),and the A3C-algorithm are conducted and compared to optimize the currents of four steering magnets and two solenoids in the low-energy beam transport section(LEBT)of the Xi’an Proton Application Facility.Optimal currents are determined when the highest transmission of a radio frequency quadrupole(RFQ)accelerator downstream of the LEBT is achieved.The optimal work points of the tuned accelerator were obtained with currents of 0 A,0 A,0 A,and 0.1 A,for the four steering magnets,and 107 A and 96 A for the two solenoids.Furthermore,the highest transmission of the RFQ was 91.2%.Meanwhile,the lower time required for the optimization with the A3C algorithm was successfully verified.Optimization with the A3C algorithm consumed 42%and 78%less time than pointwise scanning with random initialization and pre-trained initialization of weights,respectively.
基金supported by the Korea Meteorological Administration Research and Development Program under Grant CATER 2006–2303 and by the Brain Korea 21 Project in 2007
文摘A heavy rainfall case related to Mesoscale Convective Systems (MCSs) over the Korean Peninsula was selected to investigate the impact of radar data assimilation on a heavy rainfall forecast. The Weather Research and Forecasting (WRF) three-dimensional variational (3DVAR) data assimilation system with tuning of the length scale of the background error covariance and observation error parameters was used to assimilate radar radial velocity and reffectivity data. The radar data used in the assimilation experiments were preprocessed using quality-control procedures and interpolated/thinned into Cartesian coordinates by the SPRINT/CEDRIC packages. Sensitivity experiments were carried out in order to determine the optimal values of the assimilation window length and the update frequency used for the rapid update cycle and incremental analysis update experiments. The assimilation of radar data has a positive influence on the heavy rainfall forecast. Quantitative features of the heavy rainfall case, such as the maximum rainfall amount and Root Mean Squared Differences (RMSDs) of zonal/meridional wind components, were improved by tuning of the length scale and observation error parameters. Qualitative features of the case, such as the maximum rainfall position and time series of hourly rainfall, were enhanced by an incremental analysis update technique. The positive effects of the radar data assimilation and the tuning of the length scale and observation error parameters were clearly shown by the 3DVAR increment.
基金Supported by National Natural Science Foundation of China(Grant No.51375045)the State Key Laboratory Program(Grant No.GZKF-201214)
文摘In the practical application of pneumatic control devices, the nonlinearity of a pneumatic control valve become the main factor affecting the control effect, which comes mainly from the dynamic friction force. The dynamic friction inside the valve may cause hysteresis and a dead zone. In this paper, a dither compensation mechanism is proposed to reduce negative effects on the basis of analyzing the mechanism of friction force. The specific dither signal(using a sinusoidal signal) was superimposed on the control signal of the valve. Based on the relationship between the parameters of the dither signal and the inherent characteristics of the proportional servo valve, a parameter tuning method was proposed, which uses a displacement sensor to measure the maximum static friction inside the valve. According to the experimental results, the proper amplitude ranges are determined for different pressures. In order to get the optimal parameters of the dither signal, some dither compensation experiments have been carried out on different signal amplitude and gas pressure conditions. Optimal parameters are determined under two kinds of pressure conditions. Using tuning parameters the valve spool displacement experiment has been taken. From the experiment results, hysteresis of the proportional servo valve is significantly reduced. And through simulation and experiments, the cut-off frequency of the proportional valve has also been widened. Therefore after adding the dither signal, the static and dynamic characteristics of the proportional valve are both improved to a certain degree. This research proposes a parameter tuning method of dither signal, and the validity of the method is verified experimentally.