A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and pr...A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.展开更多
The removal of oil pollutants from water and purifying process of oil-polluted water are studied through catalytic degradation method with nano-MgO. The results indicated that catalytic degradation effect of nano-MgO ...The removal of oil pollutants from water and purifying process of oil-polluted water are studied through catalytic degradation method with nano-MgO. The results indicated that catalytic degradation effect of nano-MgO on the oil pollutants was associated with dosage of nano-MgO, pH and water temperature. When oil content was 1.8 mg/L, 0.17 g nano-MgO was used and the removal rate of oil was 93.92%. Furthermore, nano-Mgo was a non-photosensitive catalyst. GC/MS analysis showed that the amount of petroleum-based pollutants in water was reduced 73.77% from the previous 61 kinds to 16 kinds, and the total peak area was reduced 96.05% after catalytic degradation of nano-MgO. Therefore, nano-MgO has an excellent effect on the catalytic degradation of oil pollutants and can be applied in the treatment of oil wastewaters.展开更多
Nanometer-sized metal clusters were prepared inside single crystalline MgO films by vacuum co-deposition of metals and MgO. The atomic structure was studied by high-resolution electron microscopy (HREM) and nm-area el...Nanometer-sized metal clusters were prepared inside single crystalline MgO films by vacuum co-deposition of metals and MgO. The atomic structure was studied by high-resolution electron microscopy (HREM) and nm-area electron diffraction. The size of the clusters is ranging from 1 nm to 3 nm without those larger than 5 nm, and most of them have definite epitaxial orientations with the MgO matrix films. The character of the composite films is very much useful for the studies of various kinds of physical properties with anisotroPy. The physical properties such as electric transport, magnetic, optical absorption, sintering and catalytic ones were thus measured on the same samples analyzed by HREM by using high sensitivity apparatus with interest of clarifying the retationship between the atomic structure and physical properties展开更多
基金supported by the Youth Fund Project(2002B25)of Sichuan Department of Educationthe Scientific Research Foundation for Doctor from Yibin College of China(2010B12)
文摘A series of nano-size gold catalysts were prepared by deposition-precipitation method using silica material promoted with different amounts of MgO as the carrier. The influences of MgO addition on the structure and property of the nano-size gold catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), O2 temperature-programmed desorption (O2-TPD), and inductively coupled with plasma atomic emission spectroscopy (ICP-AES) techniques. The total oxidation of CO was chosen as the probe reaction. The results suggest that for the gold catalysts supported on the silica material after MgO modification, the size of the gold particles is pronouncedly reduced, the oxygen mobility is enhanced, and the catalytic activity for low-temperature CO oxidation is greatly improved. The gold catalyst modified by 6 wt% MgO (Mg/SiO2 weight ratio) shows higher CO oxidation activity, over which the temperature of CO total oxidation is lower about 150 K than that over the silica directly supported gold catalyst.
文摘The removal of oil pollutants from water and purifying process of oil-polluted water are studied through catalytic degradation method with nano-MgO. The results indicated that catalytic degradation effect of nano-MgO on the oil pollutants was associated with dosage of nano-MgO, pH and water temperature. When oil content was 1.8 mg/L, 0.17 g nano-MgO was used and the removal rate of oil was 93.92%. Furthermore, nano-Mgo was a non-photosensitive catalyst. GC/MS analysis showed that the amount of petroleum-based pollutants in water was reduced 73.77% from the previous 61 kinds to 16 kinds, and the total peak area was reduced 96.05% after catalytic degradation of nano-MgO. Therefore, nano-MgO has an excellent effect on the catalytic degradation of oil pollutants and can be applied in the treatment of oil wastewaters.
文摘Nanometer-sized metal clusters were prepared inside single crystalline MgO films by vacuum co-deposition of metals and MgO. The atomic structure was studied by high-resolution electron microscopy (HREM) and nm-area electron diffraction. The size of the clusters is ranging from 1 nm to 3 nm without those larger than 5 nm, and most of them have definite epitaxial orientations with the MgO matrix films. The character of the composite films is very much useful for the studies of various kinds of physical properties with anisotroPy. The physical properties such as electric transport, magnetic, optical absorption, sintering and catalytic ones were thus measured on the same samples analyzed by HREM by using high sensitivity apparatus with interest of clarifying the retationship between the atomic structure and physical properties