This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & sil...This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.展开更多
Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,c...Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes.展开更多
Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differ...Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650~C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated un- der UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were k = 0.576 mg'm3·min^-1 and K = 0.048 m3/mg.展开更多
The comparative study of the tensile plastic deformation of nano(n)-TiO2 ceramic prepared byphysical gas condensation (P) and chemical hydrolysis precipitation (C) methods was conductedby a gas pressure forming techni...The comparative study of the tensile plastic deformation of nano(n)-TiO2 ceramic prepared byphysical gas condensation (P) and chemical hydrolysis precipitation (C) methods was conductedby a gas pressure forming technique at 750~800℃. The results show that n-TiO2 (P) possessesexcellent property of tensile pIastic deformation comparing with n-TiO2(C). The reason for thisis attributed to the surface cleanness and soft agglomeration of n-TiO2 (P) particfe prepared inreIatively cIean vacuum condition.展开更多
The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength ...The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.展开更多
The mechanism and effects of sodium carboxymethyl cellulose (CMC) as a dispersant on nano ceramic aqueous suspension were examined by the measurements of ζ potential and the sedimentation test. The results show that ...The mechanism and effects of sodium carboxymethyl cellulose (CMC) as a dispersant on nano ceramic aqueous suspension were examined by the measurements of ζ potential and the sedimentation test. The results show that proper addition of CMC to nano ceramic coating exhibits an enhanced dispersity and stability compared to the coating without CMC; the stably dispersed nano ceramic coating with excellent preformance was obtained with addition of 0.10% CMC to it in pH 7 to 8.展开更多
The effects of sodium carboxymethyl cellulose and sodium citrate as dispersants on nano-ceramic aqueous suspension were examined by the measurements of ζ -potential and the sedimentation test. The results show that p...The effects of sodium carboxymethyl cellulose and sodium citrate as dispersants on nano-ceramic aqueous suspension were examined by the measurements of ζ -potential and the sedimentation test. The results show that proper addition of sodium carboxymethyl cellulose or sodium citrate into nano-ceramic coating, exhibits an enhanced dispersion and stability compared with the coating without dispersants. The negative ζ -potential of the particles in the nano-coating increases with the increase of pH value of the coating, and the curve of ζ -pH moves to lower pH range when the dispersants are added into the coating. To ensure that the coating has not only good stability and dispersibility but also no corrosivity to substrate alloy, adding 1.00% sodium citrate into coating with pH value of 7-8 is preferable to adding sodium carboxymethyl cellulose.展开更多
The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electr...The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.展开更多
substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost...substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.展开更多
The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-...The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-crystals of 20-30 nm in diameter precipitated uniformly in the glass matrix. luminescence of Er^3+ at 540 nm and 658 nm was observed in Comparing with the host glass, high efficiency upconversion the glass ceramics under the excitation of 980 nm. Moreover, the size of the precipitated nano-crystals can be controlled by heat-treatment temperature and time. With the increase of the nano-crystal size, the intensity of the red emission increased more rapidly than that of the green emission. The energy transfer process of Er^3+ and Yb^3+ was convinced and the possible mechanism of Er^3+ up-conversion was discussed.展开更多
The article deals the structure of the CaO -Al2O3 - TiO2 -SiO2 system as a basis for obtaining advanced ce- ramics with a complex of high-operational characteris- tics. As a result o['investigations the phase charctc...The article deals the structure of the CaO -Al2O3 - TiO2 -SiO2 system as a basis for obtaining advanced ce- ramics with a complex of high-operational characteris- tics. As a result o['investigations the phase charctcteristics are represented trod the graph of the relationship of the elementaory tetrahedra has been plotted. The most techno- logical system area ,for the production of heat resistant advanced ceramics has been determined. The batches for producing heat and chemical resistant dense advanced ceramics made of natural, technical and technogenic raw materials have been developed.展开更多
Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding...Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding between Al2O3 and SiO2 particles is well and the interface is even. Amorphous phases and nano crystals appear in the Al2O3/SiO2 ceramic core nano-composites, which both come into being during the cooling process after sintering. Glass phase does not appear between the Al2O3 and SiO2 particles and only appears among the Al2O3 particles, which can be explained with stress model. The quantity of the glass phase is not much and its influence on the high-temperature deformation of the ceramic core nano-composites is little.展开更多
Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching met...Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching method which is integrated with flame jet,selfpropagating high-temperature synthesis(SHS),and rapidly solidification.The morphologies and phase compositions of hollow microspheres were studied by scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and energy dispersive spectroscopy.The results show that the quenching products are regular spherical substantially with hollow structure,particle size is between few hundreds nanometers and 5 lm.Phase compositions are diphase of Fe3O4,Mn3O4,and MnFe2O4,and the spinel soft magnetic ferrite MnFe2O4 with microwave magnetic properties is in majority.Collisions with each other,burst as well as‘‘refinement’’of agglomerate powders in flame field may be the main reasons for the formation of micro-nano hollow multiphase ceramic microspheres containing MnFeOabsorbent.展开更多
文摘This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.
基金support by the National Natural Science Foundation of China(51802269,21773138)Fundamental Research Funds for the Central Universities(XDJK2019AA002)+1 种基金the Venture&Innovation Support Program for Chongqing Overseas Returnees(cx2018027)the innovation platform for academicians of Hainan province.
文摘Using porous carbon hosts in cathodes of Li-S cells can disperse S actives and offset their poor electrical conductivity.However,such reservoirs would in turn absorb excess electrolyte solvents to S-unfilled regions,causing the electrolyte overconsumption,specific energy decline,and even safety hazards for battery devices.To build better cathodes,we propose to substitute carbons by In-doped SnO_(2)(ITO)nano ceramics that own three-in-one functionalities:1)using conductive ITO enables minimizing the total carbon content to an extremely low mass ratio(~3%)in cathodes,elevating the electrode tap density and averting the electrolyte overuse;2)polar ITO nanoclusters can serve as robust anchors toward Li polysulfide(LiPS)by electrostatic adsorption or chemical bond interactions;3)they offer catalysis centers for liquid–solid phase conversions of S-based actives.Also,such ceramics are intrinsically nonflammable,preventing S cathodes away from thermal runaway or explosion.These merits entail our configured cathodes with high tap density(1.54 g cm^(−3)),less electrolyte usage,good security for flame retardance,and decent Li-storage behaviors.With lean and LiNO_(3)-free electrolyte,packed full cells exhibit excellent redox kinetics,suppressed LiPS shuttling,and excellent cyclability.This may trigger great research enthusiasm in rational design of low-carbon and safer S cathodes.
基金financially supported by the National Natural Science Foundation of China (No. 50708037)the National Science Fund for Excellent Young Scholars of China (No. 51522402)+1 种基金the Science and Technology Research Projects in Zhengzhou (No. 141PPTGG388)the National Innovation and Entrepreneurship Training Program of the Undergraduate (No. 201610078034)
文摘Diatomite-based porous ceramics were adopted as carriers to immobilize nano-TiO2 via a hydrolysis-deposition technique. The thermal degradation of as-prepared composites was investigated using thermogravimetric-differential thermal analysis, and the phase and microstructure were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy. The results indicated that the carriers were encapsulated by nano-TiO2 with a thickness of 300-450 nm. The main crystalline phase of TiO2 calcined at 650~C was anatase, and the average grain size was 8.3 nm. The FT-IR absorption bands at 955.38 cm1 suggested that new chemical bonds among Ti, O, and Si had formed in the composites. The photocatalytic (PC) activity of the composites was investigated un- der UV irradiation. Furthermore, the photodegradation kinetics of formaldehyde was investigated using the composites as the cores of an air cleaner. A kinetics study showed that the reaction rate constants of the gas-phase PC reaction of formaldehyde were k = 0.576 mg'm3·min^-1 and K = 0.048 m3/mg.
文摘The comparative study of the tensile plastic deformation of nano(n)-TiO2 ceramic prepared byphysical gas condensation (P) and chemical hydrolysis precipitation (C) methods was conductedby a gas pressure forming technique at 750~800℃. The results show that n-TiO2 (P) possessesexcellent property of tensile pIastic deformation comparing with n-TiO2(C). The reason for thisis attributed to the surface cleanness and soft agglomeration of n-TiO2 (P) particfe prepared inreIatively cIean vacuum condition.
文摘The Al2O3-ZrO2(3Y)-SiC composite ceramics used in solar thermal power were prepared by micrometric Al2O3,nano-ZrO2 and SiC powders under the condition of pressureless sintering.The bulk density and bending strength of samples with 10vol% nano-ZrO2 sintered at 1480℃ were 3.222 g/cm3 and 160.4MPa,respectively.The bending strength of samples after 7 times thermal shock tests (quenching from 1000℃ to 25℃ in air medium) is 132.0MPa,loss rate of bending strength is only 17%.The effect of nano-ZrO2 content on the microstructure and performance of Al2O3-ZrO2(3Y)-SiC composite ceramic was investigated.The experimental results show that the bending strength of samples with above 10vol% nano-ZrO2 content has decreased,because the volume expansion resulting from t-ZrO2 to m-ZrO2 phase transformation is excessive;Adding proper nano-ZrO2 would be contributed to improve the thermal shock resistance of the composite ceramics.The Al2O3-ZrO2(3Y)-SiC composite ceramic has promising potential application in solar thermal power.
文摘The mechanism and effects of sodium carboxymethyl cellulose (CMC) as a dispersant on nano ceramic aqueous suspension were examined by the measurements of ζ potential and the sedimentation test. The results show that proper addition of CMC to nano ceramic coating exhibits an enhanced dispersity and stability compared to the coating without CMC; the stably dispersed nano ceramic coating with excellent preformance was obtained with addition of 0.10% CMC to it in pH 7 to 8.
文摘The effects of sodium carboxymethyl cellulose and sodium citrate as dispersants on nano-ceramic aqueous suspension were examined by the measurements of ζ -potential and the sedimentation test. The results show that proper addition of sodium carboxymethyl cellulose or sodium citrate into nano-ceramic coating, exhibits an enhanced dispersion and stability compared with the coating without dispersants. The negative ζ -potential of the particles in the nano-coating increases with the increase of pH value of the coating, and the curve of ζ -pH moves to lower pH range when the dispersants are added into the coating. To ensure that the coating has not only good stability and dispersibility but also no corrosivity to substrate alloy, adding 1.00% sodium citrate into coating with pH value of 7-8 is preferable to adding sodium carboxymethyl cellulose.
文摘The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.
文摘substitutes tion, high loosely dis Neodymium doped-yttrium aluminum garnet (Nd : YAG) transparent polycrystalline ceramics already become of single crystals because they are provided with easy fabrication, low cost, large size, highly doped concentraheat conductivity, mass fabrication, multi-layers and multi-filnctions. The Nd:YAG precursor powders with persed , slightly agglomerated, super fine and YAG cubic crystal phase were synthesized at 1100 ℃ by the homogeneous precipitation method, using Nd2O3, Y2O3, Al(NO3)3·9H2O and urea as raw materials, (NH4)2SO4 as electrical stabilizer, TEOS as sintering additive. The Nd:YAG transparent ceramics were prepared after being vacuum sintered at 1700 ℃ for 5 h. The Nd:YAG ceramic materials were characterized by the TG-DTA, XRD, FT-IR, TEM, FEG-ESEM and FT-PL. The results show that the crystallization temperature of YAG is 850 ℃ and the intermediate crystal phase YAP forming during the heat treatment transforms to YAG cubic crystal phase at 1050 ℃. The lasing wavelength of (Nd0.01 Y0.99)3Al5O12 transparent ceramics is 1.065 μm and there exists a slight red-shift compared to the single crystal with the same chemical composition. The optical transmittance is 45 % in the visible light and 58 % in the near infrared light and the optical transmittance descends with the decreasing the wavelength.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61265004,51272097,and 11204113)the Nature and Science Fund from Yunnan Province Ministry of Education,China(Grant No.2011C13211708)
文摘The Er^3+/yb^3+ co-doped transparent oxyfluoride glass-ceramics containing CaF2 nano-crystals were successfully prepared. After heat treatments, transmission electron microscopy (TEM) images showed that CaF2 nano-crystals of 20-30 nm in diameter precipitated uniformly in the glass matrix. luminescence of Er^3+ at 540 nm and 658 nm was observed in Comparing with the host glass, high efficiency upconversion the glass ceramics under the excitation of 980 nm. Moreover, the size of the precipitated nano-crystals can be controlled by heat-treatment temperature and time. With the increase of the nano-crystal size, the intensity of the red emission increased more rapidly than that of the green emission. The energy transfer process of Er^3+ and Yb^3+ was convinced and the possible mechanism of Er^3+ up-conversion was discussed.
文摘The article deals the structure of the CaO -Al2O3 - TiO2 -SiO2 system as a basis for obtaining advanced ce- ramics with a complex of high-operational characteris- tics. As a result o['investigations the phase charctcteristics are represented trod the graph of the relationship of the elementaory tetrahedra has been plotted. The most techno- logical system area ,for the production of heat resistant advanced ceramics has been determined. The batches for producing heat and chemical resistant dense advanced ceramics made of natural, technical and technogenic raw materials have been developed.
文摘Al2O3/SiO2 ceramic core nano-composites were prepared and their microstructure was investigated by transmission electron microscope(TEM). The results show that intergranular nano-composites are achieved. The bonding between Al2O3 and SiO2 particles is well and the interface is even. Amorphous phases and nano crystals appear in the Al2O3/SiO2 ceramic core nano-composites, which both come into being during the cooling process after sintering. Glass phase does not appear between the Al2O3 and SiO2 particles and only appears among the Al2O3 particles, which can be explained with stress model. The quantity of the glass phase is not much and its influence on the high-temperature deformation of the ceramic core nano-composites is little.
基金supported by the ational Natural Science Foundation of China (No. 51172282)
文摘Fe–Fe2O3–MnO2–sucrose–epoxy resin and O2 as reaction system and feed gas,separately,were used to prepare micro-nano hollow multiphase ceramic microspheres containing MnFe2O4absorbent by self-reactive quenching method which is integrated with flame jet,selfpropagating high-temperature synthesis(SHS),and rapidly solidification.The morphologies and phase compositions of hollow microspheres were studied by scanning electron microscope(SEM),transmission electron microscope(TEM),X-ray diffraction(XRD),and energy dispersive spectroscopy.The results show that the quenching products are regular spherical substantially with hollow structure,particle size is between few hundreds nanometers and 5 lm.Phase compositions are diphase of Fe3O4,Mn3O4,and MnFe2O4,and the spinel soft magnetic ferrite MnFe2O4 with microwave magnetic properties is in majority.Collisions with each other,burst as well as‘‘refinement’’of agglomerate powders in flame field may be the main reasons for the formation of micro-nano hollow multiphase ceramic microspheres containing MnFeOabsorbent.