期刊文献+
共找到4,605篇文章
< 1 2 231 >
每页显示 20 50 100
Research Progress and Prospects of Magnetic Nanomaterials
1
作者 Jia Xu Jingming Li Jun Shi 《Expert Review of Chinese Chemical》 2024年第1期5-8,共4页
Nanomaterials are one of the research and development hotspots in the field of cutting-edge new materials,and also an important strategic emerging industry.Magnetic nanomaterials have broad application prospects in fi... Nanomaterials are one of the research and development hotspots in the field of cutting-edge new materials,and also an important strategic emerging industry.Magnetic nanomaterials have broad application prospects in fields such as chemical engineering,new materials,electronic information,and biomedicine.This article introduces the application progress and preparation methods of magnetic nanomaterials,and puts forward suggestions for further optimizing the preparation process of magnetic nanomaterials and developing new magnetic materials with better performance. 展开更多
关键词 MAGNETISM nano materialS application PREPARATION EXPECTATION
下载PDF
The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries
2
作者 Jiahao Wang Jie Zhou +2 位作者 Zhengping Zhao Feng Chen Mingqiang Zhong 《Journal of Renewable Materials》 EI 2023年第8期3309-3332,共24页
Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing... Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane(PDMS)and polyacrylonitrile(PAN)as precursors via electrospinning and freeze-drying successfully.In contrast to conventional carbon cover-ing Si-based anode materials,the C/SiOx structure is made up of PAN-C,a 3D carbon substance,and SiOx load-ing steadily on PAN-C.The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure.When employed as lithium-ion batteries(LIBs)anode materials,C/SiOx-1%composites were discovered to have an extremely high lithium storage capacity and good cycle per-formance.At a current density of 100 mA/g,its reversible capacity remained at 761 mA/h after 50 charge-dis-charge cycles and at 670 mA/h after 200 cycles.The C/SiOx-1%composite aerogel is a particularly intriguing anode candidate for high-performance LIBs due to these appealing qualities. 展开更多
关键词 Batteries anode materials carbon nanofibers composites aerogel
下载PDF
New Nano Polymer Materials for Composite Exterior-Wall Coatings
3
作者 Yue Yu 《Fluid Dynamics & Materials Processing》 EI 2023年第10期2681-2694,共14页
A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylen... A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine(TETA).Then triethyltetramine(TETA)was injected dropwise into a pro-pylene glycol methyl ether(PM)solution for chain extension reaction.A hydrophilic andflexible polyether seg-ment was introduced into the hardener molecule.The effects of TETA/DGEPG,reaction temperature and reaction time on the epoxy conversion of polyethylene glycol diglycidyl ether(DGEPG)were studied.In addition,several alternate strategies to add epoxy resin to the high-speed dispersion machine and synthesize MEA DGEBA adduct(without catalyst and with bisphenol A diglycidyl ether epoxy resin)were compared.It was found that the higher the molecular weight of triethylenetetramine,the longer the chain segment of the surface active molecule.When the equivalence ratio of amine hydrogen and epoxy group is low,the stability of lotion is good.When the ratio of amine hydrogen to epoxy group is large,the content of triethylenetetramine is small.The main objective of this study is the provision of new data and knowledge for the development of new materials in the coating and electronic industry. 展开更多
关键词 Water-based coating triethylenetetramine(TETA) surface active agent nano polymer materials TRIETHYLENETETRAMINE
下载PDF
抗菌PP/Rnano-ZnO复合材料的制备及性能研究
4
作者 程贵刚 孟新 郑雪 《精细石油化工》 CAS 2024年第5期24-27,共4页
以棒状纳米氧化锌(Rnano-ZnO)为抗菌剂、聚丙烯(PP)为基材,采用熔融共混法在双螺杆挤出机中制备了抗菌PP/Rnano-ZnO复合材料。测试了复合材料的抗菌性能,通过DSC法研究了抗菌PP/Rnano-ZnO复合材料中Rnano-ZnO质量分数对结晶性能的影响,... 以棒状纳米氧化锌(Rnano-ZnO)为抗菌剂、聚丙烯(PP)为基材,采用熔融共混法在双螺杆挤出机中制备了抗菌PP/Rnano-ZnO复合材料。测试了复合材料的抗菌性能,通过DSC法研究了抗菌PP/Rnano-ZnO复合材料中Rnano-ZnO质量分数对结晶性能的影响,采用SEM分析了复合材料冲击断面的微观形貌,采用万能电子拉伸机测试了复合材料的力学性能。结果表明,抗菌PP/Rnano-ZnO复合材料中随着Rnano-ZnO的加入,结晶温度提高了1.81℃,相对结晶度提高了5.03%,冲击强度提高了47.83%,拉伸强度提高了20.96%和断裂伸长率提高了4790%;当抗菌PP/Rnano-ZnO复合材料中Rnano-ZnO质量分数为6.0%时,其力学性能、对大肠杆菌和金黄色葡萄球菌的抗菌效果最佳。 展开更多
关键词 抗菌 复合材料 棒状纳米氧化锌 制备 性能
下载PDF
2D multifunctional devices:from material preparation to device fabrication and neuromorphic applications 被引量:1
5
作者 Zhuohui Huang Yanran Li +3 位作者 Yi Zhang Jiewei Chen Jun He Jie Jiang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期91-118,共28页
Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-d... Neuromorphic computing systems,which mimic the operation of neurons and synapses in the human brain,are seen as an appealing next-generation computing method due to their strong and efficient computing abilities.Two-dimensional (2D) materials with dangling bond-free surfaces and atomic-level thicknesses have emerged as promising candidates for neuromorphic computing hardware.As a result,2D neuromorphic devices may provide an ideal platform for developing multifunctional neuromorphic applications.Here,we review the recent neuromorphic devices based on 2D material and their multifunctional applications.The synthesis and next micro–nano fabrication methods of 2D materials and their heterostructures are first introduced.The recent advances of neuromorphic 2D devices are discussed in detail using different operating principles.More importantly,we present a review of emerging multifunctional neuromorphic applications,including neuromorphic visual,auditory,tactile,and nociceptive systems based on 2D devices.In the end,we discuss the problems and methods for 2D neuromorphic device developments in the future.This paper will give insights into designing 2D neuromorphic devices and applying them to the future neuromorphic systems. 展开更多
关键词 2D material micro–nano fabrication multifunctional system neuromorphic electronics artificial intelligence
下载PDF
Vascular endothelial growth factor protein and gene delivery by novel nanomaterials for promoting liver regeneration after partial hepatectomy
6
作者 Yun Jin Ying-Hao Guo +4 位作者 Jia-Cheng Li Qi Li Dan Ye Xiao-Xiao Zhang Jiang-Tao Li 《World Journal of Gastroenterology》 SCIE CAS 2023年第24期3748-3757,共10页
Partial hepatectomy(PH)can lead to severe complications,including liver failure,due to the low regenerative capacity of the remaining liver,especially after extensive hepatectomy.Liver sinusoidal endothelial cells(LSE... Partial hepatectomy(PH)can lead to severe complications,including liver failure,due to the low regenerative capacity of the remaining liver,especially after extensive hepatectomy.Liver sinusoidal endothelial cells(LSECs),whose proliferation occurs more slowly and later than hepatocytes after PH,compose the lining of the hepatic sinusoids,which are the smallest blood vessels in the liver.Vascular endothelial growth factor(VEGF),secreted by hepatocytes,promotes LSEC proliferation.Supplementation of exogenous VEGF after hepatectomy also increases the number of LSECs in the remaining liver,thus promoting the reestablishment of the hepatic sinusoids and accelerating liver regeneration.At present,some shortcomings exist in the methods of supplementing exogenous VEGF,such as a low drug concentration in the liver and the reaching of other organs.Moreover,VEGF should be administered multiple times and in large doses because of its short half-life.This review summarized the most recent findings on liver regeneration and new strategies for the localized delivery VEGF in the liver. 展开更多
关键词 Liver regeneration Vascular endothelial growth factor nano materials Liver resection
下载PDF
Nano-SiO_(2)改性水泥净浆结石体力学特性试验研究
7
作者 李小静 李一豪 +4 位作者 游桢 陆通 朱变变 赵海洋 孙小康 《现代矿业》 CAS 2024年第8期99-102,107,共5页
岩土领域复杂的工程地质环境和工程地质灾害对注浆材料的性能提出了更高的要求。利用电液伺服岩石真三轴试验机开展了普通425水泥结石体、添加纳米二氧化硅浆液结石体的单轴压缩试验。试验结果表明,添加纳米二氧化硅后,浆液结石体力学... 岩土领域复杂的工程地质环境和工程地质灾害对注浆材料的性能提出了更高的要求。利用电液伺服岩石真三轴试验机开展了普通425水泥结石体、添加纳米二氧化硅浆液结石体的单轴压缩试验。试验结果表明,添加纳米二氧化硅后,浆液结石体力学性能得到明显提升,且纳米二氧化硅含量在3%时效果最好。与普通水泥浆液结石体相比,添加3%纳米二氧化硅的浆液结石体单轴抗压强度增加了56.3%,弹性模量增加了29.2%。试验结果可以为复杂地质环境下的工程项目注浆设计和施工提供参考。 展开更多
关键词 纳米注浆材料 浆液固结体 单轴压缩试验 力学特性
下载PDF
Synthesis of porous nano/micro structured LiFePO_4/C cathode materials for lithium-ion batteries by spray-drying method 被引量:1
8
作者 管晓梅 李国军 +1 位作者 黎春阳 任瑞铭 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第1期141-147,共7页
In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result... In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres. 展开更多
关键词 LiFePO4/C cathode nano/micro structure porous material spray drying electrochemical properties
下载PDF
Preparation of Nano-porous Materials(Ⅰ) by Polymerization of Amphiphile Self-assemblies 被引量:2
9
作者 YUE Dong-mei +2 位作者 YU Jiong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2003年第1期112-119,共8页
The polymerization of amphiphilic self assemblies is a promising method to synthesize nano structured materials with novel properties. These materials have many attractive features for their application in biomedica... The polymerization of amphiphilic self assemblies is a promising method to synthesize nano structured materials with novel properties. These materials have many attractive features for their application in biomedical area and materials science, such as catalysis, separation, surface modification, and therapeutics areas. A general review on the polymerization of lipids and surfactant self assemblies to amphiphilic self assemblies is given in this paper with 49 references. The polymerization and the subsequently resulted structure of lipids in different morphologies are summarized. The polymerization of polymerizable surfactants(surfmers) in emulsion and liquid crystalline phases are also discussed. The potential application of new nano porous materials is briefly described. 展开更多
关键词 POLYMERIZATION AMPHIPHILE Self assembly nano porous material Lyotropic liquid crystalline
下载PDF
Carbon dioxide catalytic conversion to nano carbon material on the iron–nickel catalysts using CVD-IP method 被引量:4
10
作者 Jiaquan Hu Zhanglong Guo +2 位作者 Wei Chu Le Li Tao Lin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第5期620-625,共6页
The over-consumption of fossil fuels resulted in the large quantity emission of carbon dioxide (CO2), which was the main reason for the climate change and more extreme weathers. Hence, it is extremely pressing to ex... The over-consumption of fossil fuels resulted in the large quantity emission of carbon dioxide (CO2), which was the main reason for the climate change and more extreme weathers. Hence, it is extremely pressing to ex- plore efficient and sustainable approaches for the carbon-neutral pathway of CO2 utilization and recycling. In our recent works with this context, we developed successfully a novel "chemical vapor deposition integrated process (CVD-IP)" technology to converting robustly CO2 into the value-added solid-form carbon materials, The monometallic FeNi0-Al2O3 (FNi0) and bimetallic FeNix-Al2O3 (FNi2, FNi4, FNi8 and FNi20) samples were synthesized and effective for this new approach. The catalyst labeled FNi8 gave the better performance, exhibited the single pass solid carbon yield of 30%. These results illustrated alternative promising cases for the CO2 capture utilization storage (CCUS), by means of the CO2 catalytic conversion into the solid-form nano carbon materials. 展开更多
关键词 Carbon dioxide utilizationCatalytic capture Iron-nickel catalystChemical vapor deposition integratedprocess (CVD-IP)Solid-form nano carbon material
下载PDF
Construction and Properties of Structure-and Size-controlled Micro/Nano-energetic Materials 被引量:20
11
作者 HUANG Bing CAO Minhua +2 位作者 NIE Fude HUANG Hui HU Changwen 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第2期75-103,共29页
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development... The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given. 展开更多
关键词 applied chemistry STRUCTURE SIZE micro/nano-energetic materials construction technology PROPERTY
下载PDF
Adsorption of phenol from aqueous solution by a hierarchical micro-nano porous carbon material 被引量:4
12
作者 Liu Chengbao Chen Zhigang +5 位作者 Ni Chaoying Chen Feng Gu Cheng Cao Yu Wu Zhengying Li Ping 《Rare Metals》 SCIE EI CAS CSCD 2012年第6期582-589,共8页
A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidificatio... A hierarchical micro-nano porous carbon material (MNC) was prepared using expanded graphite (EG), sucrose, and phosphoric acid as raw materials, followed by sucrose-phosphoric acid solution impregnation, solidification, carbonization and activation. Nitrogen adsorption and mercury porosimetry show that mixed nanopores and micropores coexist in MNC with a high specific surface area of 1978 m2·g-1 and a total pore volume of 0.99 cm3·g-1. In addition, the MNC is found to consist of EG and activated carbon with the latter deposited on the interior and the exterior surfaces of the EG pores. The thickness of the activated carbon layer is calculated to be about one hundred nanometers and is further confirmed by scanning electron microscope (SEM) and transmission election microscope (TEM). A maximum static phenol adsorption of 241.2 mg·g-1 was obtained by using MNC, slightly higher than that of 220.4 mg·g-1 by using commercial activated carbon (CAC). The phenol adsorption kinetics were investigated and the data fitted well to a pseudo-second-order model. Also, an intra-particle diffusion mechanism was proposed. Furthermore, it is found that the dynamic adsorption capacity of MNC is nearly three times that of CAC. The results suggest that the MNC is a more efficient adsorbent than CAC for the removal of phenol from aqueous solution. 展开更多
关键词 micro-nano porous carbon materials expanded graphite activated carbon phenol adsorption KINETICS
下载PDF
Synthesis and Characterization of Storage Energy Materials Prepared from Nano-crystalline Cellulose/Polyethylene Glycol 被引量:5
13
作者 Xiao Ping YUAN En Yong DING 《Chinese Chemical Letters》 SCIE CAS CSCD 2006年第8期1129-1132,共4页
This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy... This paper gives a brief report of the synthesis of a new kind of solid-solid phase change materials (SSPCMs), nano-crystalline cellulose/polyethylene glycol (NCC/PEG). These PCMs have very high ability for energy storage, and their enthalpies reach 103.8 J/g. They are composed of two parts, PEG as functional branches for energy storage, and NCC as skeleton. The flexible polymer PEG was grafted onto the surface of rigid powder of NCC by covalent bonds. The results of DSC, FT-IR were briefly introduced, and some comments were also given. 展开更多
关键词 nano-crystalline cellulose (NCC) polyethylene glycol (PEG) phase change materials(PCM) energy storage DSC.
下载PDF
Preparation of nano-PANI@MnO_2 by surface initiated polymerization method using as a nano-tubular electrode material:The amount effect of aniline on the microstructure and electrochemical performance 被引量:1
14
作者 Fen Ran Yunlong Yang +5 位作者 Lei Zhao Xiaoqin Niu Dingjun Zhang Lingbin Kong Yongchun Luo Long Kang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期388-393,共6页
In this study,nano-polyanline and manganese oxide nanometer tubular composites(nano-PANI@MnO2)were prepared by a surface initiated polymerization method and used as electrochemical capacitor electrode materials; and... In this study,nano-polyanline and manganese oxide nanometer tubular composites(nano-PANI@MnO2)were prepared by a surface initiated polymerization method and used as electrochemical capacitor electrode materials; and the effect of aniline amount on the microstructure and electrochemical performance was investigated. The microstructures and surface morphologies of nano-PANI@MnO2 were characterized by X-ray diffraction,scanning electron microscopy and fourier transformation infrared spectroscope. The electrochemical performance of these composite materials was performed with cyclic voltammetry,charge–discharge test and electrochemical impedance spectroscopy,respectively. The results demonstrate that the feed ratio of aniline to MnO2 played a very important role in constructing the hierarchically nano-structure,which would,hence,determine the electrochemical performance of the materials. Using the templateassisted strategy and controlling the feed ratio of aniline to MnO2,the nanometer tubular structure of nanoPANI@MnO2 was obtained. A maximum specific capacitance of 386 F/g was achieved in aqueous 1 mol/L Na NO3 electrolyte with the potential range from 0 to 0.6 V(vs. SCE). 展开更多
关键词 Electrochemical capacitors nano-PANI@MnO2 Electrode materials
下载PDF
Investigation of nano-talc as a filling material and a reinforcing agent in high density polyethylene (HDPE) 被引量:1
15
作者 CHEN Nanchun MA Lei ZHANG Tao 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期422-425,共4页
An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-tr... An experiment of producing high density polyethylene (HDPE) nano-composite filled with 4wt.% talc was presented. Acting as filler and a reinforcing agent in the HDPE, talc powder, sized at around 5 μm, was surface-treated with aluminum diethylene glycol dinitrate coupling agent before adding to the HDPE. Analyses of the reinforced HDPE nano-composite show significant improvement in its mechanical properties including, tensile strength (>26 MPa), break elongation (<1.1%), flexural strength (>22 MPa), and friction coefficients<0.11. The results demonstrate that, after surface-treated, talc can be used as a promising filling material and a reinforcing agent in making HDPE nano-composite. 展开更多
关键词 HDPE TALC filling material reinforcing agent nano-COMPOSITE mechanical properties
下载PDF
Synthesis and room temperature ionic conductivity of nano-LaF_3 bulk material
16
作者 吴大雄 吴希俊 +1 位作者 吕燕飞 王晖 《中国有色金属学会会刊:英文版》 EI CSCD 2006年第4期828-832,共5页
The ionic conductivity (at room temperature) of nano-LaF3 bulk material and a new discovered phenomenon of increasing ionic conductivity caused by grain boundary relaxation activated by AC (alternating current) shocki... The ionic conductivity (at room temperature) of nano-LaF3 bulk material and a new discovered phenomenon of increasing ionic conductivity caused by grain boundary relaxation activated by AC (alternating current) shocking were reported. Nano-crystalline powder of LaF3 with average grain size of 16.7 nm was synthesized with a method of direct precipitation from aqueous solution. Particle size and shape of LaF3 nano-crystalline powder were analyzed by XRD and TEM. Nano-LaF3 bulk material was prepared by compacting the powder to 1 GPa at room temperature and vacuum of 10?4 Pa. The ionic conductivity of nano-LaF3 bulk material was studied with complex impedance spectra at room temperature. The ionic conductivity of nano-LaF3 bulk material (10?5 S/cm) at room temperature is significantly increased compared with that of single crystal LaF3 (10?6 S/cm). A special phenomenon is observed for the first time that the ionic conductivity increases gradually with AC scanning times. 展开更多
关键词 LAF3 纳米材料 纳米晶 离子电导性 阻抗谱 稀土
下载PDF
Agglomerating Growth of One-Dimensional Carbon Nano-Materials Synthesized from Ethanol Flames
17
作者 BAO Qiaoliang PAN Chunxu 《Wuhan University Journal of Natural Sciences》 EI CAS 2006年第3期581-584,共4页
One-dimensional carbon nano-materials (ODCNMs) synthesized from ethanol flames exhibit various agglomerated morphologies, such as "chrysanthemum-like", "hairball-like" or "orange-peel-like", "vertically alig... One-dimensional carbon nano-materials (ODCNMs) synthesized from ethanol flames exhibit various agglomerated morphologies, such as "chrysanthemum-like", "hairball-like" or "orange-peel-like", "vertically aligned" and "wrinkling-pileup". The present work studied the agglomerating process and the growth mechanism by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is thought that the size and distribution of the catalyst particles produced from pretreatment of the substrates play a key role during the formation of agglomerations. It is expected that the steady growth of ODCNMs in flames will be improved through the preparation of the catalysts. 展开更多
关键词 carbon nano-materials flame synthesis method AGGLOMERATE electron microscopy
下载PDF
Forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by CNTs based on MCST with temperature-variable material properties 被引量:1
18
作者 R.Rostami M.Mohammadimehr +1 位作者 M.Ghannad A.Jalali 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第2期97-108,共12页
In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temper... In this study, free and forced vibration analysis of nano-composite rotating pressurized microbeam reinforced by carbon nanotubes (CNTs) under magnetic field based on modify couple stress theory (MCST) with temperature-variable material propertiesis presented. Also, the boundary conditions at two ends of nano-composite rotating pressurized microbeam reinforced by CNTs are considered as simply supported. The governing equations are obtained based on the Hamilton's principle and then computed these equations by using Navier's solution. The magnetic field is inserted in the thickness direction of the nano-composite microbeam. The effects of various parameters such as angular velocity, temperature changes, and pressure between of the inside and outside, the magnetic field, material length scale parameter, and volume fraction of nanocomposite microbeam on the natural frequency and response systemare studied. The results show that with increasing volume fraction of nano-composite microbeam, thickness, material length scale parameter, and magnetic fields, the natural frequency increases. The results of this research can be used for optimization of micro-structures and manufacturing sensors, displacement fluid, and drug delivery. 展开更多
关键词 Forced vibration analysis nano-composite rotating pressurized microbeam Carbon nanotubes Modify couple stress theory Temperature-variable material properties
下载PDF
Ionic Conductivity of Nano-LaF_3 Bulk Material at Room Temperature
19
作者 Wu Daxiong Wu Xijun Lü Yanfei Wang Hui 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第2期192-192,共1页
Nanocrystalline powder of LaF3 was synthesized by a method of direct precipitation from water solution. Particle size and shape of LaF3 nanocrystalline powder was analysed with TEM. Particles were mainly spherical wit... Nanocrystalline powder of LaF3 was synthesized by a method of direct precipitation from water solution. Particle size and shape of LaF3 nanocrystalline powder was analysed with TEM. Particles were mainly spherical with narrow particle size distribution (10 20 nm). The average particle size analysed with XRD is 16.7 nm. Nano-LaF3 bulk material was prepared by compacting the powder to 1 GPa at room temperature and a vacuum of 10^-4 Pa. The ionic conductivity of nano-LaF3 bulk material was studied with complex impedance spectra at room temperature. The ionic conductivity of nano-LaF3 bulk material (1 × 10^-5 S·cm^-1 ) at room temperature is significantly increased compared to that of single crystal LaF3 (1 × 10^-6 S·cm^-1). A special phenomenon was observed firstly time that the ionic conductivity increased gradually with multiple testing in result of relaxation. 展开更多
关键词 nanoCRYSTALLINE nano-LaF3 bulk material ionic conductivity complex impedance spectra rare earths
下载PDF
纳米N-A降黏剂的制备及性能评价
20
作者 宋宏志 王少华 +3 位作者 孙玉豹 汪成 龚页境 李岗 《石油化工》 CAS CSCD 北大核心 2024年第4期545-552,共8页
针对普通纳米降黏剂对特稠油降黏效果差、洗油效率低等问题,制备了纳米N-A降黏剂,采用FTIR,TEM等方法表征了降黏剂的微观结构,考察了降黏剂的降黏效果、界面张力以及洗油效率。实验结果表明,纳米N-A降黏剂组成为:50%(w)纳米二氧化硅溶胶... 针对普通纳米降黏剂对特稠油降黏效果差、洗油效率低等问题,制备了纳米N-A降黏剂,采用FTIR,TEM等方法表征了降黏剂的微观结构,考察了降黏剂的降黏效果、界面张力以及洗油效率。实验结果表明,纳米N-A降黏剂组成为:50%(w)纳米二氧化硅溶胶+40%(w)分散剂EB-1+4.2%(w)表面修饰剂+5.8%(w)增效剂。该降黏剂分散性能良好,粒径分布在20~60 nm之间,在降黏剂含量为1%(w)、油水质量比为7∶3、200℃,矿化度为0,8829.26 mg/L条件下老化48 h,特稠油降黏后黏度分别为6280,7213 mPa·s,降黏率分别达到83.77%,81.36%,降黏性能保持率分别为96.80%,95.39%。50℃下静置90 d后降黏性能保持率大于90%,可降低油水界面张力至0.076 mN/m,乳化液滴最大粒径9.5μm,洗油效率为30.9%,相对普通降黏剂,驱油效率提高22.3百分点。 展开更多
关键词 纳米材料 特稠油 降黏剂 表面活性剂
下载PDF
上一页 1 2 231 下一页 到第
使用帮助 返回顶部