In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The result...In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.展开更多
In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)proce...In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.展开更多
Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two diffe...Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.展开更多
Blended elemental 90W 7Ni 3Fe (mass fraction, %) powder was mechanically alloyed in a planetary ball mill. Nano crystalline grains were obtained after 10 h milling. The nano structured powder was processed to full den...Blended elemental 90W 7Ni 3Fe (mass fraction, %) powder was mechanically alloyed in a planetary ball mill. Nano crystalline grains were obtained after 10 h milling. The nano structured powder was processed to full density by metal injection molding approach. Compacts from the optimal powder binder mixture were studied for molding and sintering behaviors. Milling significantly increases the maximum powder loading and homogeneity of the feedstock, and enhances the sintering densification process. When solid state sintered at 1 350~1 450 ℃, the alloy shows very fine grains (~3 μm), high tensile strength (>1 130 MPa) and almost no distortion. [展开更多
The Si L2,3 X-ray absorption near-edge structure (XANES) can be used to probe thelocal structure around Si and derive electronic information of the unoccupied s- andd-like partial density of states in nano-size SiO2. ...The Si L2,3 X-ray absorption near-edge structure (XANES) can be used to probe thelocal structure around Si and derive electronic information of the unoccupied s- andd-like partial density of states in nano-size SiO2. We present Si L2,3-edge for threedifferent size silicates acquired by total electron yield (TEY) at the photoemission sta-tion of Beijing Synchrotron Radiation Facility (BSRF). The Si L2,3-edge spectra areinterpreted based on ab initio full multiple-scattering (MS) calculation. The Si L2.3-edge of nano-size materials has XANES similar to that of a-quartz. The similaritiesbetween the Si L2.3-edge shapes attest to a common molecular-orbital picture of theirSi-O bonding and the same coordination state. However, a considerable broadeningof Si L2,3-edge XANES spectra as decrease of particle size is also an indicative ofpolyhedral distortions.展开更多
Nanograins are characterized by a typical grain size from 1 to 100 nm. Molecular dynamics simulations have been carried out for the nanograin sphere with the diameters from 1.45 to 10.12 nm. We study the influence of ...Nanograins are characterized by a typical grain size from 1 to 100 nm. Molecular dynamics simulations have been carried out for the nanograin sphere with the diameters from 1.45 to 10.12 nm. We study the influence of grain size on structure and diffusion properties of the nanograins. The results reveal that as the grain size is reduced, the fraction of grain surface increases significantly, and the surface width is approximately constant; the mean atomic energy of the surface increases distinctly, but that of the grain interior varies insignificantly; the diffusion coefficient is increased sharply, and the relation of the diffusion coefficient and the grain size is close to exponential relation below 10 nm.展开更多
Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the at...Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.展开更多
The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development...The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.展开更多
The investigation on the oxidation behaviour of Si1-xGex alloys (x=0.05, 0.15, and 0.25) is carried out. It is found for the first time that on the oxide film a germanium nano-cap with a thickness of 1.8-2.8nm and a...The investigation on the oxidation behaviour of Si1-xGex alloys (x=0.05, 0.15, and 0.25) is carried out. It is found for the first time that on the oxide film a germanium nano-cap with a thickness of 1.8-2.8nm and a few Ge nanoparticles with diameters ranging from 5.5 nm to 10 nm are formed by the low-temperatu.re laser-assisted dry oxidation of Si1-xGex substrate. A new scanning method on the decline cross-section of the multiple-layer sample is adopted to measure the layer thickness and the composition. Some new peaks in photoluminescence (PL) spectra are discovered, which could be related to the nano-cap and the nano-particles of germanium. A suitable model and several new calculating formulae with the unrestricted Hartree-Fock-Roothaan (UHFR) method and quantum confinement analysis are proposed to interpret the PL spectra and the nano-structure mechanism in the oxide.展开更多
The biodiesel prepared from Xanthoceras Sorbiflia Bunge Oil catalyzed by Ce doped nano PO_4^(3-)/ZrO_2 was investigated. A maximum biodiesel yield of 91.83% was achieved at the concentration of Ce^(3+) up to 0.1 mol/L...The biodiesel prepared from Xanthoceras Sorbiflia Bunge Oil catalyzed by Ce doped nano PO_4^(3-)/ZrO_2 was investigated. A maximum biodiesel yield of 91.83% was achieved at the concentration of Ce^(3+) up to 0.1 mol/L, calcination temperature 500 °C, calcination time 3.0 h, and the concentration of phosphoric acid of 3.5 mol/L. Ce-nano PO_4^(3-)/ZrO_2 catalyst activities were correlated with the observed physico-chemical characteristics derived from scanning electron microscopy(SEM), FT-infrared(FT-IR), X-ray diffraction(XRD), thermogravimetric(TG) and Brunauer-Emmett-Teller(BET) analysis. The delayed crystallization of ZrO_2 made surface oxides have more defects which were beneficial to the adsorption of PO_4^(3-) by the concentration increment of Ce^(3+). The chemical composition of synthesized biodiesel was confirmed by gas chromatography(GC). The characteristics of Xanthoceras Sorbiflia Bunge oil were found within the optimal range in accordance with Chinese No. 0 diesel standard as a substitute diesel fuel.展开更多
In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrol...In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.展开更多
The title compound (-)-N-[(3R)-3-cyclohexyl]-3-phenylpropananoyl]bornane-10,2sultam (C 25 H 35 NO 3 S,M r=429.60),a derivative of camphorsultam,crystallizes in the monoclinic space group P2 1 /c with a=10.3301(...The title compound (-)-N-[(3R)-3-cyclohexyl]-3-phenylpropananoyl]bornane-10,2sultam (C 25 H 35 NO 3 S,M r=429.60),a derivative of camphorsultam,crystallizes in the monoclinic space group P2 1 /c with a=10.3301(7),b=19.4040(13),c=11.8106(8),β=100.5580(10)°,V=2327.3(3) 3,Z=4,D c=1.226 g/cm 3,λ=0.71073,μ(MoKα)=0.165 mm-1 and F(000)=928.X-ray diffraction analysis reveals that the six-membered ring of sultam shows a boat form (Fig.1).The planes constructed by (C(4),C(5),C(6),C(7)) and (C(7),C(8),C(9),C(4)) form a dihedral angle of 69.5°.The C(1)-C(2)-C(3) plane forms dihedral angles to the aforementioned planes of 89.8(1) and 85.9(3)°,respectively.And molecules are linked via hydrogen bonding (C-H···N/O) interactions.展开更多
Nano-structured photon management is currently an interesting topic since it can enhance the optical absorption and reduce the surface reflection which will improve the performance of many kinds of optoelectronic devi...Nano-structured photon management is currently an interesting topic since it can enhance the optical absorption and reduce the surface reflection which will improve the performance of many kinds of optoelectronic devices, such as Si-based solar cells and light emitting diodes. Here, we report the fabrication of periodically nano-patterned Si structures by using polystyrene nano-sphere lithography technique. By changing the diameter of nano-spheres and the dry etching parameters, such as etching time and etching power, the morphologies of formed Si nano-structures can be well controlled as revealed by atomic force microscopy.A good broadband antireflection property has been achieved for the formed periodically nano-patterned Si structures though they have the low aspect ratio(<0.53). The reflection can be significantly reduced compared with that of flat Si substrate in a wavelength range from 400 nm to 1200 nm. The weighted mean reflection under the AM1.5 solar spectrum irradiation can be as low as 3.92% and the corresponding optical absorption is significantly improved, which indicates that the present Si periodic nano-structures can be used in Si-based thin film solar cells.展开更多
Gradient cemented carbides with nano-TiN were prepared by the common powder metallurgical procedure. The formation of gradient zone and the microstructure, properties of the alloys were investigated using scanning ele...Gradient cemented carbides with nano-TiN were prepared by the common powder metallurgical procedure. The formation of gradient zone and the microstructure, properties of the alloys were investigated using scanning electron microscope(SEM), energy dispersive spectroscopy(EDS) and other performance testing apparatus. Moreover, the effect of nano-TiN on the gradient cemented carbide was studied. It is found that gradient zone width increases slightly with nano-TiN introduction. Both cobalt and titanium concentrations reach the maximum near the gradient border. Tungsten concentration shows fluctuation from the surface to the bulk. (Ti ,W)C phase grains are refined for nitrogen introduction. Core-rim structure has been observed under the SEM back-scattered mode. The core appears as dark due to more titanium in it and the rim with more tungsten appears as grey. In addition, the hardness and transverse rupture strength of gradient cemented carbide are enhanced with nano-TiN introduced.展开更多
Nano-structured SiO2 thin films were prepared on the surface of carbon steel for the first time by LPD. The compositions of the films were analyzed by XPS, and the surface morphology of the thin films were observed b...Nano-structured SiO2 thin films were prepared on the surface of carbon steel for the first time by LPD. The compositions of the films were analyzed by XPS, and the surface morphology of the thin films were observed by AFM. The thin films were constituted by compact particles of SiO2, and there was no Fe in the films. In the process of film forming, the SiO2 colloid particles were deposited or absorbed directly onto the surface of carbon steel substrates that were activated by acid solution containing inhibitor, and corrosion of the substrates was avoided. The nano-structured SiO2 thin films that were prepared had excellent protective efficiency to the carbon steel.展开更多
Nonporous and porous C/PLA/nano-HA composites were fabricated by the process of solvent blending and freeze-drying technique, and the effect of porous structure on the mechanical properties of C/PLA/nano-HA composites...Nonporous and porous C/PLA/nano-HA composites were fabricated by the process of solvent blending and freeze-drying technique, and the effect of porous structure on the mechanical properties of C/PLA/nano-HA composites scaffold was investigated and analyzed. The results show that the effects of porous structure on the bending strength, modulus and curves of stress and strain were obvious. Compared with nonporous sample, the curves of stress and strain of porous sample show more rough, and alternative phenomenon of stress increase and stress relaxation appears. It is strongly suggested that the fracture model of C/PLA/nano-HA composites scaffold transforms from the local to global load due to the porous structure.展开更多
The initial field electron emission degradation behaviour of original nano-structured sp^2-bonded amorphous carbon films has been observed, which can be attributed to the increase of the work function of the film in t...The initial field electron emission degradation behaviour of original nano-structured sp^2-bonded amorphous carbon films has been observed, which can be attributed to the increase of the work function of the film in the field emission process analysed using a Fowler-Nordheim plot. The possible reason for the change of work function is suggested to be the desorption of hydrogen from the original hydrogen termination film surface due to field emission current-induced local heating. For the explanation of the emission degradation behaviour of the nano-structured sp2-bonded amorphous carbon film, a cluster model with a series of graphite (0001) basal surfaces has been presented, and the theoretical calculations have been performed to investigate work functions of graphite (0001) surfaces with different hydrogen atom and ion chemisorption sites by using first principles method based on density functional theory-local density approximation.展开更多
DC-magnetron sputtering was employed to prepare Fe-N/Ti-N periodic nano-multilayers . Magnetic properties were studied by vibrating sample magnetometry and structure by TEM and X-ray diffraction for the films. A stron...DC-magnetron sputtering was employed to prepare Fe-N/Ti-N periodic nano-multilayers . Magnetic properties were studied by vibrating sample magnetometry and structure by TEM and X-ray diffraction for the films. A strong enhancement of the saturation magnetization was found in multilayers containing thinner Fe-N layers. The coercivity was found to be nearly constant. A kind of anomalous hysteresis loops was found in some展开更多
Cu-Zn-Al alloy of one dimensional nano-structure was prepared and thestructure of obtained nano-material was characterized by transmission electron microscope (TEM). Itwas shown that there are non-linear oscillations ...Cu-Zn-Al alloy of one dimensional nano-structure was prepared and thestructure of obtained nano-material was characterized by transmission electron microscope (TEM). Itwas shown that there are non-linear oscillations on the surface of Cu-Zn-Al alloy and theconsanguineous connection exists between non-linear oscillation and the growth process of onedimensional nano-structure. The diameter of one dimensional nano-structure is about 40 nm, and theratio of length to diameter is over 40. Finally, the growth mechanism of one dimensionalnano-structure was also studied.展开更多
基金Project(2013AA050901)supported by the National High-tech Research and Development Program of China
文摘In order to enhance electrochemical properties of LiFePO4 (LFP) cathode materials, spherical porous nano/micro structured LFP/C cathode materials were synthesized by spray drying, followed by calcination. The results show that the spherical precursors with the sizes of 0.5-5 μm can be completely converted to LFP/C when the calcination temperature is higher than 500 ℃. The LFP/C microspheres obtained at calcination temperature of 700 ℃ are composed of numerous particles with sizes of -20 nm, and have well-developed interconnected pore structure and large specific surface area of 28.77 mE/g. The specific discharge capacities of the LFP/C obtained at 700 ℃ are 162.43, 154.35 and 144.03 mA.h/g at 0.5C, 1C and 2C, respectively. Meanwhile, the capacity retentions can reach up to 100% after 50 cycles. The improved electrochemical properties of the materials are ascribed to a small Li+ diffusion resistance and special structure of LFP/C microspheres.
文摘In order to improve the osseointegration and antibacterial activity of titanium alloys,micro/nano-structured ceramic coatings doped with antibacterial element F were prepared by plasma electrolytic oxidation(PEO)process on Ti6Al4V alloy in NaF electrolyte.The influence of NaF concentration(0.15-0.50 mol/L)on the PEO process,microstructure,phase composition,corrosion resistance and thickness of the coatings was investigated using scanning/transmission electron microscopy,energy dispersive spectroscopy,atomic force microscopy,X-ray diffractometer,and potentiodynamic polarization.The results demonstrated that Ti6Al4V alloy had low PEO voltage(less than 200 V)in NaF electrolyte,which decreased further as the NaF concentration increased.A micro/nano-structured coating with 10-15μm pits and 200-800 nm pores was formed in NaF electrolyte;the morphology was different from the typical pancake structure obtained with other electrolytes.The coating formed in NaF electrolyte had low surface roughness and was thin(<4μm).The NaF concentration had a small effect on the phase transition from metastable anatase phase to stable rutile phase,but greatly affected the corrosion resistance.In general,as the NaF concentration increased,the surface roughness,phase(anatase and rutile)contents,corrosion resistance,and thickness of the coating first increased and then decreased,reaching the maximum values at 0.25 mol/L NaF.
文摘Condensation is an important regime of heat transfer which has wide applications in different industries such as power plants,heating,ventilating and air conditioning,and refrigeration.Condensation occurs in two different modes including filmwise (FWC) and dropwise (DWC) condensation.DWC occurring on hydrophobic and superhydrophobic surfaces has a much higher heat transfer capacity than FWC.Therefore,wide investigations have been done to produce DWC in recent years.Superhydrophobic surfaces have micro/nano structures with low surface energy.In this study,a two-step electrodeposition process is used to produce micro/nano structures on copper specimens.The surface energy of specimens is reduced by a self-assembled monolayer using ethanol and 1-octadecanethiol solution.The results show that there is an optimum condition for electrodeposition parameters.For example,a surface prepared by 2000 s step time has 5 times greater heat transfer than FWC while a surface with 4000 s step time has nearly the same heat transfer as FWC.The surfaces of the fabricated specimens are examined using XRD and SEM analyses.The SEM analyses of the surfaces show that there are some micro-structures on the surfaces and the surface porosities are reduced by increasing the second step electrodeposition time.
文摘Blended elemental 90W 7Ni 3Fe (mass fraction, %) powder was mechanically alloyed in a planetary ball mill. Nano crystalline grains were obtained after 10 h milling. The nano structured powder was processed to full density by metal injection molding approach. Compacts from the optimal powder binder mixture were studied for molding and sintering behaviors. Milling significantly increases the maximum powder loading and homogeneity of the feedstock, and enhances the sintering densification process. When solid state sintered at 1 350~1 450 ℃, the alloy shows very fine grains (~3 μm), high tensile strength (>1 130 MPa) and almost no distortion. [
基金supported by 100-Tatlent Research Program of The Chinese Academy of Sciencesthe Natinal Natural Science Foundation of China(NSFC)for financial support(Grant No.10074063)The Chinese Academy of Sciences(No.KJ952-S1-418)
文摘The Si L2,3 X-ray absorption near-edge structure (XANES) can be used to probe thelocal structure around Si and derive electronic information of the unoccupied s- andd-like partial density of states in nano-size SiO2. We present Si L2,3-edge for threedifferent size silicates acquired by total electron yield (TEY) at the photoemission sta-tion of Beijing Synchrotron Radiation Facility (BSRF). The Si L2,3-edge spectra areinterpreted based on ab initio full multiple-scattering (MS) calculation. The Si L2.3-edge of nano-size materials has XANES similar to that of a-quartz. The similaritiesbetween the Si L2.3-edge shapes attest to a common molecular-orbital picture of theirSi-O bonding and the same coordination state. However, a considerable broadeningof Si L2,3-edge XANES spectra as decrease of particle size is also an indicative ofpolyhedral distortions.
基金supported by the National Naturl Science Foundation of China(No.10172088)the Potdoctoral Saience Foundation of China
文摘Nanograins are characterized by a typical grain size from 1 to 100 nm. Molecular dynamics simulations have been carried out for the nanograin sphere with the diameters from 1.45 to 10.12 nm. We study the influence of grain size on structure and diffusion properties of the nanograins. The results reveal that as the grain size is reduced, the fraction of grain surface increases significantly, and the surface width is approximately constant; the mean atomic energy of the surface increases distinctly, but that of the grain interior varies insignificantly; the diffusion coefficient is increased sharply, and the relation of the diffusion coefficient and the grain size is close to exponential relation below 10 nm.
文摘Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.
基金Sponsored by National Natural Science Foundation of China (21231002,21276026,21271023,21173021,91022006,11202193,11172276,and 11072225)the 111 Project ( B07012)+1 种基金the Program of Cooperation of the Beijing Education Commission ( 20091739006)Specialized Research Fund for the Doctoral Program of Higher Education ( 20101101110031)
文摘The recent research progress of structure- and size-controlled micro/nano-energetic materials is reviewed, which properties are fundamentally different from those of their corresponding bulk materials. The development of the construction strategies for achieving zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) micro/nanostructures from energetic molecules is introduced. Also, an overview of the unique properties induced by micro/nanostructures and size effects is provided. Special emphasis is focused on the size-dependent properties that are different from those of the conventional micro-sized energetic materials, such as thermal decomposition, sensitivity, combustion and detonation, and compaction behaviors. A conclusion and our view of the future development of micro/nano-energetic materials and devices are given.
基金Project supported by the Natural Science Foundation of Guizhou Province, China (Grant No 3067(2004)).
文摘The investigation on the oxidation behaviour of Si1-xGex alloys (x=0.05, 0.15, and 0.25) is carried out. It is found for the first time that on the oxide film a germanium nano-cap with a thickness of 1.8-2.8nm and a few Ge nanoparticles with diameters ranging from 5.5 nm to 10 nm are formed by the low-temperatu.re laser-assisted dry oxidation of Si1-xGex substrate. A new scanning method on the decline cross-section of the multiple-layer sample is adopted to measure the layer thickness and the composition. Some new peaks in photoluminescence (PL) spectra are discovered, which could be related to the nano-cap and the nano-particles of germanium. A suitable model and several new calculating formulae with the unrestricted Hartree-Fock-Roothaan (UHFR) method and quantum confinement analysis are proposed to interpret the PL spectra and the nano-structure mechanism in the oxide.
基金Supported by Key Laboratory of Bio-based Material Science&Technology(Northeast Forestry University)Ministry of Education(No.SWZCL2016-10)+2 种基金Natural Science Foundation of Inner Mongolia(No.2018BS03004)Talent Development Fund of Inner MongoliaNational Majority R&D Program of China(2017YFD06002025)
文摘The biodiesel prepared from Xanthoceras Sorbiflia Bunge Oil catalyzed by Ce doped nano PO_4^(3-)/ZrO_2 was investigated. A maximum biodiesel yield of 91.83% was achieved at the concentration of Ce^(3+) up to 0.1 mol/L, calcination temperature 500 °C, calcination time 3.0 h, and the concentration of phosphoric acid of 3.5 mol/L. Ce-nano PO_4^(3-)/ZrO_2 catalyst activities were correlated with the observed physico-chemical characteristics derived from scanning electron microscopy(SEM), FT-infrared(FT-IR), X-ray diffraction(XRD), thermogravimetric(TG) and Brunauer-Emmett-Teller(BET) analysis. The delayed crystallization of ZrO_2 made surface oxides have more defects which were beneficial to the adsorption of PO_4^(3-) by the concentration increment of Ce^(3+). The chemical composition of synthesized biodiesel was confirmed by gas chromatography(GC). The characteristics of Xanthoceras Sorbiflia Bunge oil were found within the optimal range in accordance with Chinese No. 0 diesel standard as a substitute diesel fuel.
文摘In the present work, osteoblast behavior on a hierarchical micro-/nano-structured titanium surface was investigated. A hi- erarchical hybrid micro-/nano-structured titanium surface topography was produced via Electrolytic Etching (EE). MG-63 cells were cultured on disks for 2 h to 7 days. The osteoblast response to the hierarchical hybrid micro-/nano-structured titanium surface was evaluated through the osteoblast cell morphology, attachment and proliferation. For comparison, MG-63 cells were also cultured on Sandblasted and Acid-etched (SEA) as well as Machined (M) surfaces respectively. The results show signifi- cant differences in the adhesion rates and proliferation levels of MG-63 cells on EE, SLA, and M surfaces. Both adhesion rate and proliferation level on EE surface are higher than those on SLA and M surfaces. Therefore, we may expect that, comparing with SLA and M surfaces, bone growth on EE surface could be accelerated and bone formation could be promoted at an early stage, which could be applied in the clinical practices for immediate and early-stage loadings.
基金sponsored by the Science Foundation of Ministry of Education for the New Teacher at the University of China (No. 20070511006)the Research Initiation Funds of Huazhong Agricultural University (No. 52204-09057)
文摘The title compound (-)-N-[(3R)-3-cyclohexyl]-3-phenylpropananoyl]bornane-10,2sultam (C 25 H 35 NO 3 S,M r=429.60),a derivative of camphorsultam,crystallizes in the monoclinic space group P2 1 /c with a=10.3301(7),b=19.4040(13),c=11.8106(8),β=100.5580(10)°,V=2327.3(3) 3,Z=4,D c=1.226 g/cm 3,λ=0.71073,μ(MoKα)=0.165 mm-1 and F(000)=928.X-ray diffraction analysis reveals that the six-membered ring of sultam shows a boat form (Fig.1).The planes constructed by (C(4),C(5),C(6),C(7)) and (C(7),C(8),C(9),C(4)) form a dihedral angle of 69.5°.The C(1)-C(2)-C(3) plane forms dihedral angles to the aforementioned planes of 89.8(1) and 85.9(3)°,respectively.And molecules are linked via hydrogen bonding (C-H···N/O) interactions.
基金supported by NSFC(Nos.61036001and 11274155)"973"pro ject(2013CB632101)NSF of Jiangsu Province(BK2010010)and PAPD
文摘Nano-structured photon management is currently an interesting topic since it can enhance the optical absorption and reduce the surface reflection which will improve the performance of many kinds of optoelectronic devices, such as Si-based solar cells and light emitting diodes. Here, we report the fabrication of periodically nano-patterned Si structures by using polystyrene nano-sphere lithography technique. By changing the diameter of nano-spheres and the dry etching parameters, such as etching time and etching power, the morphologies of formed Si nano-structures can be well controlled as revealed by atomic force microscopy.A good broadband antireflection property has been achieved for the formed periodically nano-patterned Si structures though they have the low aspect ratio(<0.53). The reflection can be significantly reduced compared with that of flat Si substrate in a wavelength range from 400 nm to 1200 nm. The weighted mean reflection under the AM1.5 solar spectrum irradiation can be as low as 3.92% and the corresponding optical absorption is significantly improved, which indicates that the present Si periodic nano-structures can be used in Si-based thin film solar cells.
基金Funded by Research Funds for the Central Universities(No.2011SCU11038)Chengdu Science and Technology Project(Nos.10GGZD080GX-268 and 11DXYB096JH-027)
文摘Gradient cemented carbides with nano-TiN were prepared by the common powder metallurgical procedure. The formation of gradient zone and the microstructure, properties of the alloys were investigated using scanning electron microscope(SEM), energy dispersive spectroscopy(EDS) and other performance testing apparatus. Moreover, the effect of nano-TiN on the gradient cemented carbide was studied. It is found that gradient zone width increases slightly with nano-TiN introduction. Both cobalt and titanium concentrations reach the maximum near the gradient border. Tungsten concentration shows fluctuation from the surface to the bulk. (Ti ,W)C phase grains are refined for nitrogen introduction. Core-rim structure has been observed under the SEM back-scattered mode. The core appears as dark due to more titanium in it and the rim with more tungsten appears as grey. In addition, the hardness and transverse rupture strength of gradient cemented carbide are enhanced with nano-TiN introduced.
文摘Nano-structured SiO2 thin films were prepared on the surface of carbon steel for the first time by LPD. The compositions of the films were analyzed by XPS, and the surface morphology of the thin films were observed by AFM. The thin films were constituted by compact particles of SiO2, and there was no Fe in the films. In the process of film forming, the SiO2 colloid particles were deposited or absorbed directly onto the surface of carbon steel substrates that were activated by acid solution containing inhibitor, and corrosion of the substrates was avoided. The nano-structured SiO2 thin films that were prepared had excellent protective efficiency to the carbon steel.
基金Project(30870609) supported by the National Natural Science Foundation of ChinaProjects(KJ081205 KJ091213) supported by the Natural Science Foundation of Chongqing Education Committee, China
文摘Nonporous and porous C/PLA/nano-HA composites were fabricated by the process of solvent blending and freeze-drying technique, and the effect of porous structure on the mechanical properties of C/PLA/nano-HA composites scaffold was investigated and analyzed. The results show that the effects of porous structure on the bending strength, modulus and curves of stress and strain were obvious. Compared with nonporous sample, the curves of stress and strain of porous sample show more rough, and alternative phenomenon of stress increase and stress relaxation appears. It is strongly suggested that the fracture model of C/PLA/nano-HA composites scaffold transforms from the local to global load due to the porous structure.
文摘The initial field electron emission degradation behaviour of original nano-structured sp^2-bonded amorphous carbon films has been observed, which can be attributed to the increase of the work function of the film in the field emission process analysed using a Fowler-Nordheim plot. The possible reason for the change of work function is suggested to be the desorption of hydrogen from the original hydrogen termination film surface due to field emission current-induced local heating. For the explanation of the emission degradation behaviour of the nano-structured sp2-bonded amorphous carbon film, a cluster model with a series of graphite (0001) basal surfaces has been presented, and the theoretical calculations have been performed to investigate work functions of graphite (0001) surfaces with different hydrogen atom and ion chemisorption sites by using first principles method based on density functional theory-local density approximation.
文摘DC-magnetron sputtering was employed to prepare Fe-N/Ti-N periodic nano-multilayers . Magnetic properties were studied by vibrating sample magnetometry and structure by TEM and X-ray diffraction for the films. A strong enhancement of the saturation magnetization was found in multilayers containing thinner Fe-N layers. The coercivity was found to be nearly constant. A kind of anomalous hysteresis loops was found in some
基金This work was financially supported by the National Climbing Programme of China (No. 1999-444)the Natural Science Foundation of Tianjin (No.003805611 and 033610611) the Center of Liuhui Application Mathematics of Nankai University and Tianjin Univers
文摘Cu-Zn-Al alloy of one dimensional nano-structure was prepared and thestructure of obtained nano-material was characterized by transmission electron microscope (TEM). Itwas shown that there are non-linear oscillations on the surface of Cu-Zn-Al alloy and theconsanguineous connection exists between non-linear oscillation and the growth process of onedimensional nano-structure. The diameter of one dimensional nano-structure is about 40 nm, and theratio of length to diameter is over 40. Finally, the growth mechanism of one dimensionalnano-structure was also studied.