Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effecti...Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.展开更多
The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalyti...The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.展开更多
The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. ...The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. TiH 2 coated with nano TiO 2 particles, in which there is an oxidation film on its surface, shown in the experiments, will obviously achieve good effects on releasing hydrogen slowly in high temperature. There are different structures and properties of TiH 2 coated by nano TiO 2 particles prepared in different ways in high temperature, which can influence on releasing hydrogen.展开更多
The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalys...The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalysts was proposed.The process included alkali (NaOH) hydrothermal treatment,sulfuric acid washing,and calcination.Anatase TiO_(2) in spent SCR catalyst was reconstructed by forming Na_(2)Ti_(2)O_(4)(OH)_(2) nanosheet during NaOH hydrothermal treatment and H_(2)Ti_(2)O_(4)(OH)_(2) during sulfuric acid washing.Anatase TiO_(2) was recovered by decomposing H_(2)Ti_(2)O_(4)(OH)_(2) during calcination.The surface pore properties of the recovered anatase TiO_(2) were adequately improved,and its specific surface area (SSA) and pore volume (PV) were 85 m^(2)·g^(-1)and 0.40 cm^(3)·g^(-1),respectively.The elements affecting catalytic abilities(arsenic and sodium) were also removed.The SCR catalyst was resynthesized using the recovered TiO_(2) as raw material,and its catalytic performance in NO selective reduction was comparable with that of commercial SCR catalyst.This study realized the sustainable recycling of anatase TiO_(2) from spent SCR catalyst.展开更多
TiO_(2)-ZnO nanocomposites were synthesized by varying Ti:Zn molar ratio from 1:0.1(TZ-1:0.1)to 1:1(TZ-1:1).With increase in Zn content,from TZ-1:0.1 to TZ-1:0.2,anatase transformed to rutile phase.TZ-1:0.3,which cont...TiO_(2)-ZnO nanocomposites were synthesized by varying Ti:Zn molar ratio from 1:0.1(TZ-1:0.1)to 1:1(TZ-1:1).With increase in Zn content,from TZ-1:0.1 to TZ-1:0.2,anatase transformed to rutile phase.TZ-1:0.3,which contained a blend of phases,including rutile and anatase TiO_(2),ZnO,and zinc titanates,exhibited the narrowest bandgap(2.5±0.1 e V),and showed the highest photocatalytic activity.TZ-1:1 was predominated by zinc titanates.All the nanocomposites exhibited narrower bandgaps compared to pure TiO_(2)nanoparticles,facilitating visible light activity.This study was designed to explore whether a method targeting the removal of a specific crystalline phase(anatase)influenced the properties and photocatalytic activity of the nanocomposite.Selective dissolution not only removed anatase phase,but also led to significant loss of crystallinity,widened the bandgap,and adversely affected photocatalytic performance,in nanocomposites that contained>80%anatase phase(TZ-1:0.1 and TZ-1:0.2).However,in nanocomposites that contained less of anatase phase(TZ-1:0.3and TZ-1:1),the morphology,bandgap,crystallinity,and the extent of photocatalytic activity at the end of 240 min remained largely unaffected.Photocatalytic activity in TZ-1:0.3 and TZ-1:1 originated from a blend of phases comprising of less photocatalytically active phases,such as rutile TiO_(2),Zn TiO3,and Zn2TiO4,rather than from the anatase phase.The Ti:Zn molar ratio controlled the phases present in TiO_(2)-ZnO nanocomposites,which,in turn,controlled the physicochemical properties and visible light activity.Thus,in nanocomposites that contained a mix of several phases,the properties and photocatalytic activity were not dependent on anatase phase.展开更多
文摘Nanocomposite films consisting of carboxymethyl cellulose,polyethylene oxide(CMC/PEO),and anatase titanium diox-ide(TO)were produced by the use of sol-gel and solution casting techniques.TiO2 nanocrystals were effectively incorporated into CMC/PEO polymers,as shown by X-ray diffraction(XRD)and attenuated total reflectance fourier transform infrared(ATR-FTIR)analysis.The roughness growth is at high levels of TO nanocrystals(TO NCs),which means increasing active sites and defects in CMC/PEO.In differential scanning calorimetry(DSC)thermograms,the change in glass transition temperature(Tg)val-ues verifies that the polymer blend interacts with TO NCs.The increment proportions of TO NCs have a notable impact on the dielectric performances of the nanocomposites,as observed.The electrical properties of the CMC/PEO/TO nanocomposite undergo significant changes.The nanocomposite films exhibit a red alteration in the absorption edge as the concentration of TO NCs increases in the polymer blend.The decline in the energy gap is readily apparent as the weight percentage of TO NCs increases.The photoluminescence(PL)emission spectra indicate that the sites of the luminescence peak maximums show slight variation;peaks get wider,while their intensities decrease dramatically as the concentration of TO increases.These nanocomposite materials show potential for multifunctional applications including optoelectronics,antireflection coatings,pho-tocatalysis,light emitting diodes,and solid polymer electrolytes.
基金Foundation item: The National Natural Science Foundation of China(No. 20371023)
文摘The nanometer and ordinary anatase titanium dioxide(TiO_2) powders were adopted as the sonocatalysts for the degradation of methyl orange used as a model compound for the first time. It was found that the sonocatalytic degradation effect of methyl orange in the presence of TiO_2 powder were much better than that without TiO_2, but the sonocatalytic activity of the nanometer anatase TiO_2 particle was obviously higher than that of ordinary anatase TiO_2 particle. Although there are many factors influencing sonocatalytic degradation of methyl orange, the experimental results showed that the best degradation ratio of methyl orange could be obtained when the experimental conditions were: initial concentration 15 mg/L, nanometer anatase TiO_2 adding amount 750 mg/L, ultrasonic frequency 40 kHz, output power 50 W, pH = 3.0 and temperature 40℃ within 150 min. In addition, the catalytic activity of reused nanometer anatase TiO_2 catalyst was also studied and found to decline gradually comparing with initial nanometer anatase TiO_2 catalyst. All experiments indicated that the method of the sonocatalytic degradation of organic pollutants in the presence of TiO_2 powder was an advisable choice for non- or low-transparent organic wastewaters.
文摘The surface of Titanium Hydride (TiH 2) is coated by Nano Titanium Dioxide (TiO 2) particles prepared in both of methods of hydrolysis reaction of Ti(OC 4H 9) 4 and base precipitation reaction of Ti(SO 4) 2. TiH 2 coated with nano TiO 2 particles, in which there is an oxidation film on its surface, shown in the experiments, will obviously achieve good effects on releasing hydrogen slowly in high temperature. There are different structures and properties of TiH 2 coated by nano TiO 2 particles prepared in different ways in high temperature, which can influence on releasing hydrogen.
基金supported by the National Natural Science Foundation of China (52274411)the National Natural Science Foundation of China (51904287)the Innovation Academy for Green Manufacture,Chinese Academy of Sciences (IAGM2022D11)。
文摘The improper disposal of spent selective catalytic reduction (SCR) catalysts causes environmental pollution and metal resource waste.A novel process to recover anatase titanium dioxide (TiO_(2)) from spent SCR catalysts was proposed.The process included alkali (NaOH) hydrothermal treatment,sulfuric acid washing,and calcination.Anatase TiO_(2) in spent SCR catalyst was reconstructed by forming Na_(2)Ti_(2)O_(4)(OH)_(2) nanosheet during NaOH hydrothermal treatment and H_(2)Ti_(2)O_(4)(OH)_(2) during sulfuric acid washing.Anatase TiO_(2) was recovered by decomposing H_(2)Ti_(2)O_(4)(OH)_(2) during calcination.The surface pore properties of the recovered anatase TiO_(2) were adequately improved,and its specific surface area (SSA) and pore volume (PV) were 85 m^(2)·g^(-1)and 0.40 cm^(3)·g^(-1),respectively.The elements affecting catalytic abilities(arsenic and sodium) were also removed.The SCR catalyst was resynthesized using the recovered TiO_(2) as raw material,and its catalytic performance in NO selective reduction was comparable with that of commercial SCR catalyst.This study realized the sustainable recycling of anatase TiO_(2) from spent SCR catalyst.
基金provided by Department of Science and Technology,New Delhi,India,under the Water Technology Initiative(WTI)scheme(Project code:DST/TM/WTI/2K15/101(G)).
文摘TiO_(2)-ZnO nanocomposites were synthesized by varying Ti:Zn molar ratio from 1:0.1(TZ-1:0.1)to 1:1(TZ-1:1).With increase in Zn content,from TZ-1:0.1 to TZ-1:0.2,anatase transformed to rutile phase.TZ-1:0.3,which contained a blend of phases,including rutile and anatase TiO_(2),ZnO,and zinc titanates,exhibited the narrowest bandgap(2.5±0.1 e V),and showed the highest photocatalytic activity.TZ-1:1 was predominated by zinc titanates.All the nanocomposites exhibited narrower bandgaps compared to pure TiO_(2)nanoparticles,facilitating visible light activity.This study was designed to explore whether a method targeting the removal of a specific crystalline phase(anatase)influenced the properties and photocatalytic activity of the nanocomposite.Selective dissolution not only removed anatase phase,but also led to significant loss of crystallinity,widened the bandgap,and adversely affected photocatalytic performance,in nanocomposites that contained>80%anatase phase(TZ-1:0.1 and TZ-1:0.2).However,in nanocomposites that contained less of anatase phase(TZ-1:0.3and TZ-1:1),the morphology,bandgap,crystallinity,and the extent of photocatalytic activity at the end of 240 min remained largely unaffected.Photocatalytic activity in TZ-1:0.3 and TZ-1:1 originated from a blend of phases comprising of less photocatalytically active phases,such as rutile TiO_(2),Zn TiO3,and Zn2TiO4,rather than from the anatase phase.The Ti:Zn molar ratio controlled the phases present in TiO_(2)-ZnO nanocomposites,which,in turn,controlled the physicochemical properties and visible light activity.Thus,in nanocomposites that contained a mix of several phases,the properties and photocatalytic activity were not dependent on anatase phase.