期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Micro/nano Indentation and Single Grit Diamond Grinding Mechanism on Ultra Pure Fused Silica 被引量:10
1
作者 ZHAO Qingliang GUO Bing +1 位作者 STEPHENSIN David CORBETT John 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期963-970,共8页
The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced ... The existing research about ductile grinding of fused silica glass was mainly focused on how to carry out ductile regime material removal for generating very "smoothed" surface and investigate the machining-induced damage in the grinding in order to reduce or eliminate the subsurface damage.The brittle/ductile transition behavior of optical glass materials and the wear of diamond wheel are the most important factors for ductile grinding of optical glass.In this paper,the critical brittle/ductile depth,the influence factors on brittle/ductile transition behavior,the wear of diamond grits in diamond grinding of ultra pure fused silica(UPFS) are investigated by means of micro/nano indentation technique,as well as single grit diamond grinding on an ultra-stiff machine tool,Tetraform "C".The single grit grinding processes are in-process monitored using acoustic emission(AE) and force dynamometer simultaneously.The wear of diamond grits,morphology and subsurface integrity of the machined groves are examined with atomic force microscope(AFM) and scanning electron microscope(SEM).The critical brittle/ductile depth of more than 0.5 μm is achieved.When compared to the using roof-like grits,by using pyramidal diamonds leads to higher critical depths of scratch with identical grinding parameters.However,the influence of grit shapes on the critical depth is not significant as supposed.The grinding force increased linearly with depth of cut in the ductile removal regime,but in brittle removal regime,there are large fluctuations instead of forces increase.The SEM photographs of the cross-section profile show that the median cracks dominate the crack patterns beneath the single grooves.Furthermore,The SEM photographs show multi worn patterns of diamond grits,indicating an inhomogeneous wear mechanism of diamond grits in grinding of fused silica with diamond grinding wheels.The proposed research provides the basal technical theory for improving the ultra-precision grinding of UPFS. 展开更多
关键词 ultra pure fused silica (UPFS) micro/nano indentation single grit diamond grinding ductile material removal subsurface integrity diamond grits wear
下载PDF
Deformation Analysis of Micro/Nano Indentation and Diamond Grinding on Optical Glasses 被引量:2
2
作者 ZHAO Qingliang ZHAO Lingling +2 位作者 GUO Bing STEPHENSIN David CORBETT John 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第3期411-418,共8页
The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding, which aim at gene... The previous research of precision grinding optical glasses with electrolytic in process dressing (ELID) technology mainly concentrated on the action of ELID and machining parameters when grinding, which aim at generating very "smoothed" surfaces and reducing the subsurface damage. However, when grinding spectrosil 2000 and BK7 glass assisted with ELID technology, a deeply comparative study on material removal mechanism and the wheel wear behaviors have not been given yet. In this paper, the micro/nano indentation technique is initially applied for investigating the mechanical properties of optical glasses, whose results are then refereed to evaluate the machinability. In single grit diamond scratching on glasses, the scratching traces display four kinds of scratch characteristics according to different material removal modes. In normal grinding experiments, the result shows BK7 glass has a better machinability than that of spectrosil 2000, corresponding to what the micro/nano indentation vent revealed. Under the same grinding depth parameters, the smaller amplitude of acoustic emission (AE) raw signals, grinding force and grinding force ratio correspond to a better surface quality. While for these two kinds of glasses, with the increasing of grinding depth, the variation trends of the surface roughness, the force ratio, and the AE raw signals are contrary, which should be attributed to different material removal modes. Moreover, the SEM micrographs of used wheels surface indicate that diamond grains on the wheel surface after grinding BK7 glass are worn more severely than that of spectrosil 2000. The proposed research analyzes what happened in the grinding process with different material removal patterns, which can provide a basis for producing high-quality optical glasses and comprehensively evaluate the surface and subsurface integrity of optical glasses. 展开更多
关键词 optical glasses micro/nano indentation single grit diamond scratching material removal mode surface integrity electrolytic in process dressing (ELID)
下载PDF
Influence of sample surface condition on nano indentation experiment
3
作者 WANG Yanli, LIN Zhi, LIN Junpin, PENG Jihua, and CHEN GuoliangState Key laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China 《Rare Metals》 SCIE EI CAS CSCD 2002年第2期131-132,共2页
The microhardness and elastic modules of the materials weremeasured using the Nano Indenter II, which is a new measuring systemfor the mechanical properties of materials on nano-scale. It candetermine themicrohardness... The microhardness and elastic modules of the materials weremeasured using the Nano Indenter II, which is a new measuring systemfor the mechanical properties of materials on nano-scale. It candetermine themicrohardness, elastic modules and other mechanicalproperties of materials through measuring applied load and depthunder indenter tip. The results indicated that surface condition ofsample such as the surface roughness affects the experimental preci-sion. 展开更多
关键词 MICROHARDNESS elastic modules nano Indenter
下载PDF
MECHANICAL PROPERTIES AND SIZE EFFECTS OF SINGLE CRYSTAL SILICON 被引量:4
4
作者 HAN Guangping  LIU Kai WANG Xiuhong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第2期290-293,共4页
Six kinds of micro bridge-beam specimens with different sizes are fabricated using photolithography technology for bending test. Beam specimens with trapezoidal section could be representatives of those with rectangle... Six kinds of micro bridge-beam specimens with different sizes are fabricated using photolithography technology for bending test. Beam specimens with trapezoidal section could be representatives of those with rectangle and square section, which are usually applied in MEMS. Nano indentation method used in bending test can be applied to both elastic and plastic materials. Also, some mechanical properties parameters such as the modulus of elasticity, hardness and the bending strength are obtained. The average modulus of elasticity of SCS is 170.295 0±2.485 0 GPa, showing no size effects, but the bending strength ranges from 3.24 GPa to 10.15 GPa, displaying strong size effects, and the average hardness is 9.496 7±1.753 3 GPa,in which no obvious size effects are observed. 展开更多
关键词 Mechanical properties Modulus of elasticity Size effect nano indentation Bending test
下载PDF
Residual stress induced wetting variation on electric brush-plated Cu film
5
作者 孟可可 江月 +2 位作者 江忠浩 连建设 蒋青 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期572-576,共5页
Nanocrystalline Cu film with a mirror surface finishing is prepared by the electric brush-plating technique. The as- prepared Cu film exhibits a superhydrophilic behavior with an apparent water contact angle smaller t... Nanocrystalline Cu film with a mirror surface finishing is prepared by the electric brush-plating technique. The as- prepared Cu film exhibits a superhydrophilic behavior with an apparent water contact angle smaller than 10°. A subsequent increase in the water contact angle and a final wetting transition from inherent hydrophilicity with water contact angle smaller than 90° to apparent hydrophobicity with water contact angle larger than 90° are observed when the Cu film is subjected to natural aging. Analysis based on the measurement of hardness with nanoindentation and the theory of the bond-order-length-strength correlation reveals that this wetting variation on the Cu film is attributed to the relaxation of residual stress generated during brush-plating deposition and a surface hydrophobization role associated with the broken bond polarization induced by surface nanostructure. 展开更多
关键词 SUPERHYDROPHILICITY wetting transition residual stress nano indenter
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部