This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetat...This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.展开更多
The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmissio...The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmission of electrons and secondary photons under the incidence of 0.5 to 20 KeV range of primary electrons. More than 99.9% of the primary electrons were transmitted in the 125 nm thick MgO/TiO<sub>2</sub> material at 20 KeV. This occurred because several interactions took place in the transmitted primary irradiation such as characteristic, fluorescence, and bremsstrahlung produced when of the occupation of the KL3, KL2, KM3, and KM2 shell and sub-shell of titanium and magnesium which are the elements with a high atomic number in the material. The transmission particle characteristic of this material is therefore an indicator capable of improving the electrical performance and properties of the sensor.展开更多
This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting co...This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.展开更多
纳米 Ti O2 改性不饱和聚酯树脂 ,其目的是对不饱和聚酯进行同时增韧增强改性。用“反应法”制备的纳米 Ti O2 /UPR,在纳米 Ti O2 与 UPR之间产生的新化学键将纳米 Ti O2 粒子接入 UPR长链上 ,这种新的结构决定了纳米 Ti O2 /UPR的性能...纳米 Ti O2 改性不饱和聚酯树脂 ,其目的是对不饱和聚酯进行同时增韧增强改性。用“反应法”制备的纳米 Ti O2 /UPR,在纳米 Ti O2 与 UPR之间产生的新化学键将纳米 Ti O2 粒子接入 UPR长链上 ,这种新的结构决定了纳米 Ti O2 /UPR的性能。研究结果表明 ,纳米 Ti O2 /UPR的反应活性高于 UPR,纳米 Ti O2 /UPR的冲击韧性和弯曲强度较 UPR分别提高 46%和 5 5 % ,纳米 Ti O2 /UPR的耐热性及介电性与展开更多
文摘This study used a Polyindole in combination with TiO2 nanocatalyst as an efficient heterogeneous catalyst to carry out a multi-component Hantzsch reaction involving different aromatic aldehydes with methyl acetoacetate, and aqueous ammonium to create 1,4-dihydropyridine derivatives under solvent free condition at ambient temperature. A broad range of aldehydes and methyl acetoacetates, ranging from heteroaromatic to polyaromatic one, with high level of functional group tolerance can be used to provide the desired products possessing relevant medicinal moiety in high yields. This technology has prospective advantages over current protocols, including the utilization of a cheap, stable, recyclable, and safe catalyst, quicker reaction times with higher yields and simple product isolation.
文摘The simulation by the Monte Carlo method executed by the software PyPENELOPE proved effective to specify the particle propagation characteristics by calculating the absorption fractions, backscattering and transmission of electrons and secondary photons under the incidence of 0.5 to 20 KeV range of primary electrons. More than 99.9% of the primary electrons were transmitted in the 125 nm thick MgO/TiO<sub>2</sub> material at 20 KeV. This occurred because several interactions took place in the transmitted primary irradiation such as characteristic, fluorescence, and bremsstrahlung produced when of the occupation of the KL3, KL2, KM3, and KM2 shell and sub-shell of titanium and magnesium which are the elements with a high atomic number in the material. The transmission particle characteristic of this material is therefore an indicator capable of improving the electrical performance and properties of the sensor.
文摘This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.
文摘纳米 Ti O2 改性不饱和聚酯树脂 ,其目的是对不饱和聚酯进行同时增韧增强改性。用“反应法”制备的纳米 Ti O2 /UPR,在纳米 Ti O2 与 UPR之间产生的新化学键将纳米 Ti O2 粒子接入 UPR长链上 ,这种新的结构决定了纳米 Ti O2 /UPR的性能。研究结果表明 ,纳米 Ti O2 /UPR的反应活性高于 UPR,纳米 Ti O2 /UPR的冲击韧性和弯曲强度较 UPR分别提高 46%和 5 5 % ,纳米 Ti O2 /UPR的耐热性及介电性与