Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbon...Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect.展开更多
In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion ero...In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.展开更多
Carbon nanosheet films were deposited on A1 substrates by using plasma assisted chemical vapor deposition (PACVD) technique. And after being peeled off from A1 substrates, carbon nanosheet powders (CNSPs) were obt...Carbon nanosheet films were deposited on A1 substrates by using plasma assisted chemical vapor deposition (PACVD) technique. And after being peeled off from A1 substrates, carbon nanosheet powders (CNSPs) were obtained. In Raman spectrum of carbon film, there was a strong and broadened peak at about 1,580 cm^-1, indicating a carbon diamond-like film. Atomic force microscope image showed that the carbon diamond-like film had a grain size less than 100 nm, and its surface roughness Ra was 17.95 nm in an area of 5×5 μm^2. The CNSPs were irregular sheets with curly edges and a length of several micrometers to several hundreds of micrometers. The BET surface area of CNSPs was 6.66 m^2/g with no micro-pore present, which was confirmed by N2 adsorption-desorption characterization. In the adsorption testing, when the relative pressure p/po was higher than 0.3, the adsorption behavior did not follow the Langmuir equation. The addition of CNSPs to carbon black (catalyst support) could improve hydrodesulfurization performance of carbon supported Ni-W catalysts for diesel oil.展开更多
Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw mat...Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.展开更多
For ultra-low-carbon(ULC)steel production,the higher oxygen content before Ruhrstahl-Heraeus(RH)decarburization(de-C)treatment could shorten the de-C time in the RH degasser.However,this would lead to oxidation rates ...For ultra-low-carbon(ULC)steel production,the higher oxygen content before Ruhrstahl-Heraeus(RH)decarburization(de-C)treatment could shorten the de-C time in the RH degasser.However,this would lead to oxidation rates being exceeded by molten steel production,affecting ULC steel surface quality.In this work,a carbon powder addition(CPA)process was proposed to reduce the dissolved oxygen content at the end of RH de-C through addition of carbon powder to molten steel in the vacuum vessel.Carbon and oxygen behavior during the CPA and conventional process was then studied.The results demonstrated that the de-C rate with CPA was lower compared to the conventional process,but the carbon content at the end of de-C presented no difference.The de-C reaction for CPA process took place in the four reaction sites:(1)within the bulk steel where the spontaneous CO bubbles form;(2)splashing area on the liquid steel surface;(3)Ar bubble surface;(4)molten steel surface.The CPA process could significantly reduce the dissolved oxygen content at the end of de-C,the sum content of FeO and MnO in the slag,the aluminum consumption,and the defect rate of rolled products.This was beneficial in improving ULC steel cleanliness.展开更多
Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) o...Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) operated in parallel under the same feed, equipped with the same electronic control backwashing device. One was used as the control SMBR (CSMBR) while the other was dosed with powdered activated carbon (PAC) (PAC-amended SMBR, PSMBR). The backwashing interval was 5 min. One suction period was about 90 min by adjusting preestablished backwashing vacuum and pump frequency. The average flux of CSMBR during a steady periodic state of 24 d (576 h) was 5.87 L/h with average hydraulic residence time (HRT) of 5.97 h and that of PSMBR during a steady periodic state of 30 d (720 h) was 5.85 L/h with average HRT of 5.99 h. The average total chemical oxygen demand (COD) removal efficiency of CSMBR was 89.29% with average organic loading rate (OLR) at 4.16 kg COD/(m^3.d) while that of PSMBR was 89.79% with average OLR at 5.50 kg COD/(m^3.d). COD concentration in the effluent of both SMBRs achieved the second level of the general wastewater effluent standard GB8978-1996 for the raw medicine material industry (300 mg/L). Hence, SMBR with electronic control backwashing was a viable process for medium-strength Chinese traditional medicine wastewater treatment. Moreover, the increasing rates of preestablished backwashing vacuum, pump frequency, and vacuum and flux loss caused by mixed liquor in PSMBR all lagged compared to those in CSMBR; thus the actual operating time of the PSMBR system without membrane cleaning was extended by up to 1.25 times in contrast with the CSMBR system, and the average total COD removal efficiency of PSMBR was enhanced with higher average OLR.展开更多
Combined with DTG analysis, X-Ray diffraction analysis (XRD) and field emission scanning electron microscopy analysis (FSEM) affiliated with energy dispersive spectrometer analysis (EDS), the early hydration and...Combined with DTG analysis, X-Ray diffraction analysis (XRD) and field emission scanning electron microscopy analysis (FSEM) affiliated with energy dispersive spectrometer analysis (EDS), the early hydration and carbonation behavior of cement paste compacts incorporated with 30% of dolomite powder at low water to cement ratio (0.15) was investigated. The results showed that early carbonation curing was capable of developing rapid early strength. It is noted that the carbonation duration should be strictly controlled otherwise subsequent hydration might be hindered. Dolomite powder acted as nuclei of crystallization, resulting in acceleration of products formation and refinement of products crystal size. Therefore, as for cement-based material, it was found that early carbonation could reduce cement dosages to a large extent and promote rapid strength gain resulting from rapid formation of products, supplemental enhancement due to water release in the reaction of carbonation, and formation ofnanometer CaCO3 skeleton network at early age.展开更多
Multiwalled carbon nanotubes (MWNTs) were treated with the reflux within the concentrated nitric acid for 0-25 h to purify and disperse the tangled MWNTs. The effect of reflux time on the morphology and the weight los...Multiwalled carbon nanotubes (MWNTs) were treated with the reflux within the concentrated nitric acid for 0-25 h to purify and disperse the tangled MWNTs. The effect of reflux time on the morphology and the weight loss of MWNTs were investigated. Meanwhile,the dispersion of MWNTs with 0-2.0 wt.% in 2024Al powders using mechanical stirring with an assisting ultrasonic shaker in ethanol was also studied. The results show that the reflux time markedly affects the morphology of MWNTs. The weight loss of MWNTs i...展开更多
Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treat...Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treatment parameter on carbon content of composite powders were also discussed.The results of SEM and XRD revealed that the carbon decomposing from glucose was more active than carbon black.Therefore,WC-Co nanosized composite powders could be synthesized at 900°C for 1 h under a hydrogen atmosphere.The individual WC grains were bonded together into a long strip under the action of cobalt.The results of carbon analysis revealed that the total carbon content decreased with the increase of the temperature in the range of 800-1000°C.Moreover,the total carbon content and the compounded carbon increased with the increase of the flow rate of H2 in the range of 1.1-1.9 m3/h.展开更多
The powdered activated carbon treatment(PACT) process has been widely used in many industrial fields, however,very few PACT processes are built for petrochemical wastewater treatment in China. An industrial PACT unit ...The powdered activated carbon treatment(PACT) process has been widely used in many industrial fields, however,very few PACT processes are built for petrochemical wastewater treatment in China. An industrial PACT unit launched in a petrochemical plant was introduced and evaluated from both the practice and mechanism study. Practically, the PACT process showed excellent capability in pollutants removal, shock resistance, toxicity tolerance, and the COD and ammoniumN in effluent of PACT unit assisted by PAC was equal to 15.5 mg/L and 0.7 mg/L lower than that without PAC addition,respectively. The wet oxidation regeneration unit was quite efficient in supplying regenerated PAC, and, however, the hard calcium sulphate scale and the high pollutant concentration solution needed to be carefully controlled. Moreover, although the carbon balance showed that the adsorption capability of regenerated PAC was negligible, the biological tests proved that the regenerated PAC increased microbe activity up to 17% more than pure activated sludge system, which was almost compatible with the fresh activated carbon.展开更多
Reduction of Cr(VI)using zero-valent iron(ZVI)could not only decrease the amounts of chemicals used for reduction,but also decrease the discharge of sludge.In order to find a desirable ZVI material,reduction of Cr(VI)...Reduction of Cr(VI)using zero-valent iron(ZVI)could not only decrease the amounts of chemicals used for reduction,but also decrease the discharge of sludge.In order to find a desirable ZVI material,reduction of Cr(VI)with a relative high concentration using different kinds of ZVI powders(mainly carbon differences)including reduced Fe,grey cast iron,pig iron,nodular pig iron was carried out.Parameters such as ZVI dosage,type and size affecting on Cr(VI)reduction were firstly examined and grey cast iron was selected as a preferable reducing material,followed by pig iron.Additionally,it was found that the parameters had significant influences on experimental kinetics.Then,morphology and composition of the sample before and after reaction were characterized by SEM,EPMA and XPS analyses to disclose carbon effect on the reducibility.In order to further interpret reaction mechanism,different reaction models were constructed.It was revealed that not only the carbon content could affect the Cr(VI)reduction,but also the carbon structure had an important effect on its reduction.展开更多
An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the ...An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter) x l0 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).展开更多
The behaviors ot PbSO4/Pb and PbO4/PbSO4 electrode prepared from PbCO3 have been examined using powder microelectrode(PME) technique and cyclic voltammetry(CV). Firstly, PMEs parked with Pb- CO3 transformed into PtSO4...The behaviors ot PbSO4/Pb and PbO4/PbSO4 electrode prepared from PbCO3 have been examined using powder microelectrode(PME) technique and cyclic voltammetry(CV). Firstly, PMEs parked with Pb- CO3 transformed into PtSO4 PME in 1. 0 mol/L H2SO4 solution at 30 C, and then the PbSO4 in the PMEs were formed to Pb or PbO2 using an unsymmetrical signal(Qa/Qe for PbSO4/Pb electrode and Qe/Qa for PsO2/ PbSO4 electrode being 0. 1-0. 3) in 2. S mol/L H2SO4 solution. The results show that the CV characteristic of either PbSO4/Pb or PsO2/PbSO4 PME prepared from PhCO3 are as good as that of both electrodes made from lead oxide powder produced by ball mill.展开更多
Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composi...Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.展开更多
To explore the protective effect of extract powder of turmeric on carbon tetrachloride (CCl4)-induced acute hepatic injury, the mice were administrated with extract powder of turmeric with different doses (50, 100,...To explore the protective effect of extract powder of turmeric on carbon tetrachloride (CCl4)-induced acute hepatic injury, the mice were administrated with extract powder of turmeric with different doses (50, 100, 200 mg/kg) for 7 d. Then the mice were treated with 0.12% CCl4 by intraperitoneal injection. The levels of ALT, AST in serum and activities of SOD, CAT, MDA, GSH-Px in liver tissue were detected and the liver lesions were examined. The results showed that the activities of ALT, AST and the level of MDA in extract powder of turmeric group were signif- icantly decreased, and the activities of SOD, CAT, GSH-Px were significantly increased, and liver pathology were improved compared with the injured group (P〈 0.05 or P〈0.01). It indicated that the extract powder of turmeric had significant protective effect against CCl4 induced acute hepatic injury in mice.展开更多
Cordierite precursor was obtained through a process, which involved the decomposition of metal nitrates on the surface of ultrafine carbon black powder between 100-300℃ and the gasification of the carbon black at hig...Cordierite precursor was obtained through a process, which involved the decomposition of metal nitrates on the surface of ultrafine carbon black powder between 100-300℃ and the gasification of the carbon black at higher temperature in air. The average size of the particles, which were heat-treated at 700℃ for 10h, is about 1020nm, and the specific surface area is about 129m 2/g. The experimental results show that the ultrafine particles of cordierite precursor can be produced by this process. The precursor powder was calcined at different temperatures. X-ray diffraction examination indicates that β-quartz is crystallized from the amorphous matrix around 850℃ firstly and then MgO-Al 2O 3 spinel and α-cordierite appears. Above 1000℃, MgO-Al 2O 3 spinel and cristobalite disappear gradually and form an intermediate phase (sapphirine). At around 1300℃, the main phase is α-cordierite, and no other phase is detected.展开更多
Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flak...Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.展开更多
In order to tackle the shortcomings of high brittleness,hard graphitization,and poor oxidation resistance resulted from carbonization of phenolic resin of Mg O- C refractories, effects of 2 mass% spherical Ni, and2 ma...In order to tackle the shortcomings of high brittleness,hard graphitization,and poor oxidation resistance resulted from carbonization of phenolic resin of Mg O- C refractories, effects of 2 mass% spherical Ni, and2 mass% spherical Ni plus 7. 5 mass% Al composite powder on microstructure of the secondary carbon in Mg O- C refractories matrix were investigated. The results show that a large number of carbon whiskers form after the carbonization of phenolic resin with Ni powder;in the Mg O- C refractories matrix with only Ni powder,the carbon microspheres form at all treatment temperatures and change slightly with the temperature rising;the carbon whiskers begin to generate in the specimens with composite powder at 1 000 ℃,the diameter of the carbon whiskers is about 0. 4- 0. 5 μm,and the length is about 3- 4 μm,and the formed carbon whiskers increase gradually with the temperature rising.展开更多
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023 and GJJ181022)。
文摘Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect.
基金This work is supported by the Zhuhai Science and Technology Project(ZH22036203200015PWC)the Open Foundation of State Key Laboratory of Subtropical Building Science(2022ZB20).
文摘In this paper,the durability of cement mortar prepared with a recycled-concrete fine powder(RFP)was examined;including the analysis of a variety of aspects,such as the carbonization,sulfate attack and chloride ion erosion resistance.The results indicate that the influence of RFP on these three aspects is different.The carbonization depth after 30 days and the chloride diffusion coefficient of mortar containing 10%RFP decreased by 13.3%and 28.19%.With a further increase in the RFP content,interconnected pores formed between the RFP particles,leading to an acceleration of the penetration rate of CO_(2)and Cl^(−).When the RFP content was less than 50%,the corrosion resistance coefficient of the compressive strength of the mortar was 0.84-1.05 after 90 days of sulfate attack.But the expansion and cracking of the mortar was effectively alleviated due to decrease of the gypsum production.Scanning electron microscope(SEM)analysis has confirmed that 10%RFP contributes to the formation of a dense microstructure in the cement mortar.
基金the Venture Fund of PetroChina Company Limted (050511-3-4)
文摘Carbon nanosheet films were deposited on A1 substrates by using plasma assisted chemical vapor deposition (PACVD) technique. And after being peeled off from A1 substrates, carbon nanosheet powders (CNSPs) were obtained. In Raman spectrum of carbon film, there was a strong and broadened peak at about 1,580 cm^-1, indicating a carbon diamond-like film. Atomic force microscope image showed that the carbon diamond-like film had a grain size less than 100 nm, and its surface roughness Ra was 17.95 nm in an area of 5×5 μm^2. The CNSPs were irregular sheets with curly edges and a length of several micrometers to several hundreds of micrometers. The BET surface area of CNSPs was 6.66 m^2/g with no micro-pore present, which was confirmed by N2 adsorption-desorption characterization. In the adsorption testing, when the relative pressure p/po was higher than 0.3, the adsorption behavior did not follow the Langmuir equation. The addition of CNSPs to carbon black (catalyst support) could improve hydrodesulfurization performance of carbon supported Ni-W catalysts for diesel oil.
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key ResearchandDevelopment Project(231111230200).
文摘Aiming at improving the properties of magnesia carbon materials,silicon aluminum carbide(Al_(4)SiC_(4))containing materials were prepared using industrial aluminum powder,silicon carbide powder,and graphite as raw materials,and activated alumina powder as an additive,mixing thoroughly,pressing into cylinders and then firing at 1200℃for 30 min in a carbon embedded atmosphere by the microwave method.The effects of the aluminum powder addition(20%and 24%,by mass)and activated alumina powder addition(0,3%,5%and 7%,by mass)on the microwave synthesis of Al_(4)SiC_(4) as well as the effect of the obtained Al_(4)SiC_(4) containing material on the properties of magnesia carbon bricks were studied.The results show that:compared with the samples with 20%aluminum powder,those with 24%aluminum powder generate more Al_(4)SiC_(4).With the activated alumina powder addition increasing from 0 to 7%,the amount of Al_(4)SiC_(4) generated increases first and then decreases.Compared with the sample without activated alumina powder,the samples with activated alumina powder show lower bulk density and higher apparent porosity.With the activated alumina powder addition increasing from 3%to 7%,the bulk density of the samples increases first and then decreases,while the apparent porosity of the samples shows an opposite trend.The optimal additions are 24%aluminum powder and 5%activated alumina powder,and Al_(4)SiC_(4) synthesized in this sample has a hexagonal plate structure.With the synthesized Al_(4)SiC_(4) containing material added,the magnesia carbon brick has slightly increased cold modulus of rupture,basically the same modulus of elasticity and improved oxidation resistance.
基金financially supported by the National Natural Science Foundation of China(No.51874021)Fundamental Research Funds for the Central Universities of China(No.FRF-IC-18-002)State Key Laboratory of Advanced Metallurgy Foundation of China(No.41618019)
文摘For ultra-low-carbon(ULC)steel production,the higher oxygen content before Ruhrstahl-Heraeus(RH)decarburization(de-C)treatment could shorten the de-C time in the RH degasser.However,this would lead to oxidation rates being exceeded by molten steel production,affecting ULC steel surface quality.In this work,a carbon powder addition(CPA)process was proposed to reduce the dissolved oxygen content at the end of RH de-C through addition of carbon powder to molten steel in the vacuum vessel.Carbon and oxygen behavior during the CPA and conventional process was then studied.The results demonstrated that the de-C rate with CPA was lower compared to the conventional process,but the carbon content at the end of de-C presented no difference.The de-C reaction for CPA process took place in the four reaction sites:(1)within the bulk steel where the spontaneous CO bubbles form;(2)splashing area on the liquid steel surface;(3)Ar bubble surface;(4)molten steel surface.The CPA process could significantly reduce the dissolved oxygen content at the end of de-C,the sum content of FeO and MnO in the slag,the aluminum consumption,and the defect rate of rolled products.This was beneficial in improving ULC steel cleanliness.
基金Project supported by the Hi-Tech Research and Development Program(863)of China(No. 2002AA601310).
文摘Chinese traditional medicine wastewater, rich in macromolecule and easy to foam in aerobic biodegradation such as Glycosides, was treated by two identical bench-scale aerobic submerged membrane bioreactors (SMBRs) operated in parallel under the same feed, equipped with the same electronic control backwashing device. One was used as the control SMBR (CSMBR) while the other was dosed with powdered activated carbon (PAC) (PAC-amended SMBR, PSMBR). The backwashing interval was 5 min. One suction period was about 90 min by adjusting preestablished backwashing vacuum and pump frequency. The average flux of CSMBR during a steady periodic state of 24 d (576 h) was 5.87 L/h with average hydraulic residence time (HRT) of 5.97 h and that of PSMBR during a steady periodic state of 30 d (720 h) was 5.85 L/h with average HRT of 5.99 h. The average total chemical oxygen demand (COD) removal efficiency of CSMBR was 89.29% with average organic loading rate (OLR) at 4.16 kg COD/(m^3.d) while that of PSMBR was 89.79% with average OLR at 5.50 kg COD/(m^3.d). COD concentration in the effluent of both SMBRs achieved the second level of the general wastewater effluent standard GB8978-1996 for the raw medicine material industry (300 mg/L). Hence, SMBR with electronic control backwashing was a viable process for medium-strength Chinese traditional medicine wastewater treatment. Moreover, the increasing rates of preestablished backwashing vacuum, pump frequency, and vacuum and flux loss caused by mixed liquor in PSMBR all lagged compared to those in CSMBR; thus the actual operating time of the PSMBR system without membrane cleaning was extended by up to 1.25 times in contrast with the CSMBR system, and the average total COD removal efficiency of PSMBR was enhanced with higher average OLR.
基金Funded by the National Key Research Program(973 Program)(No.2013CB035901)the National Natural Science Foundation of China(No.51379163)
文摘Combined with DTG analysis, X-Ray diffraction analysis (XRD) and field emission scanning electron microscopy analysis (FSEM) affiliated with energy dispersive spectrometer analysis (EDS), the early hydration and carbonation behavior of cement paste compacts incorporated with 30% of dolomite powder at low water to cement ratio (0.15) was investigated. The results showed that early carbonation curing was capable of developing rapid early strength. It is noted that the carbonation duration should be strictly controlled otherwise subsequent hydration might be hindered. Dolomite powder acted as nuclei of crystallization, resulting in acceleration of products formation and refinement of products crystal size. Therefore, as for cement-based material, it was found that early carbonation could reduce cement dosages to a large extent and promote rapid strength gain resulting from rapid formation of products, supplemental enhancement due to water release in the reaction of carbonation, and formation ofnanometer CaCO3 skeleton network at early age.
文摘Multiwalled carbon nanotubes (MWNTs) were treated with the reflux within the concentrated nitric acid for 0-25 h to purify and disperse the tangled MWNTs. The effect of reflux time on the morphology and the weight loss of MWNTs were investigated. Meanwhile,the dispersion of MWNTs with 0-2.0 wt.% in 2024Al powders using mechanical stirring with an assisting ultrasonic shaker in ethanol was also studied. The results show that the reflux time markedly affects the morphology of MWNTs. The weight loss of MWNTs i...
基金Project(51274107)supported by the National Natural Science Foundation of ChinaProject(2015FB127)supported by the Yunnan Natural Science Foundation,ChinaProject(2016P20151130003)supported by Analysis Foundation of Kunming University of Science and Technology,China
文摘Pure WC-6%Co nanosized composite powders were synthesized via a low-temperature method.The effects of carbon source on microstructure characteristic of composite powders were investigated,and the effects of heat-treatment parameter on carbon content of composite powders were also discussed.The results of SEM and XRD revealed that the carbon decomposing from glucose was more active than carbon black.Therefore,WC-Co nanosized composite powders could be synthesized at 900°C for 1 h under a hydrogen atmosphere.The individual WC grains were bonded together into a long strip under the action of cobalt.The results of carbon analysis revealed that the total carbon content decreased with the increase of the temperature in the range of 800-1000°C.Moreover,the total carbon content and the compounded carbon increased with the increase of the flow rate of H2 in the range of 1.1-1.9 m3/h.
基金financially supported by SINOPEC (CLY15043)CRICC of ChemChina (2017-KZY03 and 2018-KZ-Y04)
文摘The powdered activated carbon treatment(PACT) process has been widely used in many industrial fields, however,very few PACT processes are built for petrochemical wastewater treatment in China. An industrial PACT unit launched in a petrochemical plant was introduced and evaluated from both the practice and mechanism study. Practically, the PACT process showed excellent capability in pollutants removal, shock resistance, toxicity tolerance, and the COD and ammoniumN in effluent of PACT unit assisted by PAC was equal to 15.5 mg/L and 0.7 mg/L lower than that without PAC addition,respectively. The wet oxidation regeneration unit was quite efficient in supplying regenerated PAC, and, however, the hard calcium sulphate scale and the high pollutant concentration solution needed to be carefully controlled. Moreover, although the carbon balance showed that the adsorption capability of regenerated PAC was negligible, the biological tests proved that the regenerated PAC increased microbe activity up to 17% more than pure activated sludge system, which was almost compatible with the fresh activated carbon.
基金Project(51604131)supported by the National Natural Science Foundation of ChinaProject(2017FB084)supported by the Yunnan Province Applied Basic Research,China+1 种基金Project(KKSY201563041)supported by the Talent&Training Program of Yunnan Province,ChinaProjects(2017T20090159,2018T20150055)supported by the Testing and Analyzing Funds of Kunming University of Science and Technology,China
文摘Reduction of Cr(VI)using zero-valent iron(ZVI)could not only decrease the amounts of chemicals used for reduction,but also decrease the discharge of sludge.In order to find a desirable ZVI material,reduction of Cr(VI)with a relative high concentration using different kinds of ZVI powders(mainly carbon differences)including reduced Fe,grey cast iron,pig iron,nodular pig iron was carried out.Parameters such as ZVI dosage,type and size affecting on Cr(VI)reduction were firstly examined and grey cast iron was selected as a preferable reducing material,followed by pig iron.Additionally,it was found that the parameters had significant influences on experimental kinetics.Then,morphology and composition of the sample before and after reaction were characterized by SEM,EPMA and XPS analyses to disclose carbon effect on the reducibility.In order to further interpret reaction mechanism,different reaction models were constructed.It was revealed that not only the carbon content could affect the Cr(VI)reduction,but also the carbon structure had an important effect on its reduction.
基金supported by the Royal Academy of Engineering,United Kingdom
文摘An extensive study has been conducted on the proton exchange membrane fuel cells (PEMFCs) with reducing Pt loading. This is commonly achieved by developing methods to increase the utilization of the platinum in the catalyst layer of the electrodes. In this paper, a novel process of the catalyst layers was introduced and investigated. A mixture of carbon powder and Nafion solution was sprayed on the glassy carbon electrode (GCE) to form a thin carbon layer. Then Pt particles were deposited on the surface by reducing hexachloroplatinic (IV) acid hexahydrate with methanoic acid. SEM images showed a continuous Pt gradient profile among the thickness direction of the catalytic layer by the novel method. The Pt nanowires grown are in the size of 3 nm (diameter) x l0 nm (length) by high solution TEM image. The novel catalyst layer was characterized by cyclic voltammetry (CV) and scanning electron microscope (SEM) as compared with commercial Pt/C black and Pt catalyst layer obtained from sputtering. The results showed that the platinum nanoparticles deposited on the carbon powder were highly utilized as they directly faced the gas diffusion layer and offered easy access to reactants (oxygen or hydrogen).
基金Supported by the National Natural Science of China (29677013) Chenguang Foundation of Wuhan Municipal Science and Technology
文摘The behaviors ot PbSO4/Pb and PbO4/PbSO4 electrode prepared from PbCO3 have been examined using powder microelectrode(PME) technique and cyclic voltammetry(CV). Firstly, PMEs parked with Pb- CO3 transformed into PtSO4 PME in 1. 0 mol/L H2SO4 solution at 30 C, and then the PbSO4 in the PMEs were formed to Pb or PbO2 using an unsymmetrical signal(Qa/Qe for PbSO4/Pb electrode and Qe/Qa for PsO2/ PbSO4 electrode being 0. 1-0. 3) in 2. S mol/L H2SO4 solution. The results show that the CV characteristic of either PbSO4/Pb or PsO2/PbSO4 PME prepared from PhCO3 are as good as that of both electrodes made from lead oxide powder produced by ball mill.
基金Projects(5117916851308310)supported by the National Natural Science Foundation of China+1 种基金Project(LQ13E080007)supported by Zhejiang Provincial Natural Science Foundation,ChinaProject supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Jiangsu Province,China
文摘Nickel is a heavy metal which has the potential threaten to human's health and attracts public concern recently. The carbonized leaf powder is expected as suitable adsorbent for Ni(II) removal became of the composition of some beneficial groups. In this work, carbonized leaf powder was evaluated for its adsorption performance towards Ni(II). According to the results, adsorbent component, dosage, initial solute concentration, solution pH, temperature and contact time can significantly affect the efficiency of Ni(II) removal. Sips model fits the test results best, and the adsorption capacity towards Ni(II) is determined around 37.62 mg/g. The thermodynamic behaviors reveal the endothermic and spontaneous nature of the adsorption. The free adsorption energy (fluctuate around 8 kJ/mol) predicted by D-R model indicates that the adsorption capacity originated from both physical and chemical adsorption. Room temperature (15-25 ℃) is suitable for Ni(II) removal as well as low energy consumption for temperature enhancement. Further conclusions about the mechanism of chemical adsorption are obtained through analysis of the FT-IR test and XRD spectra, which indicates that the adsorption process occurs predominantly between amine, carbonate, phosphate and nickel ions.
基金Supported by the Scientific and Technological Innovation Project of Wuhan Academy of Agricultural Science&Technology(CX201417)~~
文摘To explore the protective effect of extract powder of turmeric on carbon tetrachloride (CCl4)-induced acute hepatic injury, the mice were administrated with extract powder of turmeric with different doses (50, 100, 200 mg/kg) for 7 d. Then the mice were treated with 0.12% CCl4 by intraperitoneal injection. The levels of ALT, AST in serum and activities of SOD, CAT, MDA, GSH-Px in liver tissue were detected and the liver lesions were examined. The results showed that the activities of ALT, AST and the level of MDA in extract powder of turmeric group were signif- icantly decreased, and the activities of SOD, CAT, GSH-Px were significantly increased, and liver pathology were improved compared with the injured group (P〈 0.05 or P〈0.01). It indicated that the extract powder of turmeric had significant protective effect against CCl4 induced acute hepatic injury in mice.
文摘Cordierite precursor was obtained through a process, which involved the decomposition of metal nitrates on the surface of ultrafine carbon black powder between 100-300℃ and the gasification of the carbon black at higher temperature in air. The average size of the particles, which were heat-treated at 700℃ for 10h, is about 1020nm, and the specific surface area is about 129m 2/g. The experimental results show that the ultrafine particles of cordierite precursor can be produced by this process. The precursor powder was calcined at different temperatures. X-ray diffraction examination indicates that β-quartz is crystallized from the amorphous matrix around 850℃ firstly and then MgO-Al 2O 3 spinel and α-cordierite appears. Above 1000℃, MgO-Al 2O 3 spinel and cristobalite disappear gradually and form an intermediate phase (sapphirine). At around 1300℃, the main phase is α-cordierite, and no other phase is detected.
基金Projects(51772081,51837009,51971091)supported by the National Natural Science Foundation of ChinaProject(HFZL2018CXY003-4)supported by the Industry-University-Research Cooperation of AECC,ChinaProject(kq1902046)supported by the Major Science and Technology Projects of Changsha City,China。
文摘Resin matrix carbon brush composites(RMCBCs)are critical materials for high-powered electric tools.However,effectively improving their wear resistance and heat dissipation remains a challenge.RMCBCs prepared with flake graphite powders that were evenly loaded with tungsten copper composite powder(RMCBCs-W@Cu)exhibited a low wear rate of 1.63 mm^(3)/h,exhibiting 48.6%reduction in the wear rate relative to RCMBCs without additives(RMCBCs-0).In addition,RMCBCs-W@Cu achieved a low friction coefficient of 0.243 and low electric spark grade.These findings indicate that tungsten copper composite powders provide particle reinforcement and generate a gradation effect for the epoxy resin(i.e.,connecting phase)in RMCBCs,which weakens the wear of RMCBCs caused by fatigue under a cyclic current-carrying wear.
文摘In order to tackle the shortcomings of high brittleness,hard graphitization,and poor oxidation resistance resulted from carbonization of phenolic resin of Mg O- C refractories, effects of 2 mass% spherical Ni, and2 mass% spherical Ni plus 7. 5 mass% Al composite powder on microstructure of the secondary carbon in Mg O- C refractories matrix were investigated. The results show that a large number of carbon whiskers form after the carbonization of phenolic resin with Ni powder;in the Mg O- C refractories matrix with only Ni powder,the carbon microspheres form at all treatment temperatures and change slightly with the temperature rising;the carbon whiskers begin to generate in the specimens with composite powder at 1 000 ℃,the diameter of the carbon whiskers is about 0. 4- 0. 5 μm,and the length is about 3- 4 μm,and the formed carbon whiskers increase gradually with the temperature rising.