Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeol...Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeolite microspheres (Ca-MZS) and iron cross-linked nano-Fe3O4 modified zeolite microspheres (Fe-MZS) were prepared and compared for their adsorption performance.The effects of adsorbent dosage,solution pH,initial concentration and ion content on the removal of Cu^2+ from wastewater are investigated,and the adsorption kinetics and isotherms for the adsorbent materials were analyzed.The experimental results indicate that for the initial concentration of Cu^2+ of 30 mg/L,the adsorption is noted to be most stable.The optimal initial pH for adsorbing Cu^2+ is observed to be 5.5.At an optimal dosage of Ca-MZS of 900 mg/L,the adsorption capacity is measured to be 28.25 mg/g,along with the removal rate of 72.49%.The addition of Na+ and K+ affects the adsorption of Cu^2+.For the Na^+ and K^+ concentration of 0.2 mmol/L,the Cu^2+ removal rate by Ca-MZS drops to 11.94% and 22.12%,respectively.As compared with the adsorbents such as Natural Zeolite (NZ),Ca-MS and Fe-MZS,Ca-MZS demonstrates the best removal effect in solution,where the removal rate reaches 84.27%,with the maximum adsorption capacity of 28.09 mg/g.The Cu^2+ adsorption kinetics of Ca-MZS is observed to follow the Elovich kinetic model,with the adsorption isotherm data fitting the Freundlich isotherm model by using the non-linear method.展开更多
With the rapid development of nanotechnology and widespread use of nanoproducts, concerns have arisen regarding the ecotoxicity of these materials. In this paper, the photosynthetic toxicity and oxidative damage induc...With the rapid development of nanotechnology and widespread use of nanoproducts, concerns have arisen regarding the ecotoxicity of these materials. In this paper, the photosynthetic toxicity and oxidative damage induced by nano Fe3O4 on a model organism, Chlorella vulgaris (C. vulgaris) in aquatic environment, were studied. The results showed that Nano-Fe3O4 was toxic to C. vulgaris and affected its content of chlorophyll a, malonaldehyde and glutathione, CO2 absorption, net photosynthetic rate, superoxide dismutase activity and inhibition of hydroxyl radical generation. At higher concentrations, compared with the control group, the toxicity of nano-Fe3O4 was significantly different. It suggested that nano-Fe3O4 is ecotoxic to C. vulgaris in aquatic environment.展开更多
A new composite adsorbent, nano-Fe3O4/bacterial cellulose(BC), was prepared through blending method. The process of adsorbing Cd2+ including its isotherm and kinetics measured was studied. The results show that the...A new composite adsorbent, nano-Fe3O4/bacterial cellulose(BC), was prepared through blending method. The process of adsorbing Cd2+ including its isotherm and kinetics measured was studied. The results show that the adsorption efficiency is improved because of huge surface area and surface coordination of nano-Fe3O4 particles. Its adsorption capacity is 27.97 mg/g and the maximum of Cd2+ removal is 74%. The adsorption kinetics can be described by pseudo-second rate model and the adsorption equilibrium by Langmuir type. The superparamagnetism of nano-Fe3O4 particles can help to solve the difficult separation of single BC adsorbent and lead to the quick separation of composite adsorbent from the liquid if a magnetic field was applied. Cd2+ can be desorbed effectively by EDTA and HCl from the composite adsorbent, which can make it be reused.展开更多
Monooctadecyl maleate, as a polymerizable surfactant, was synthesized by the mono-esterification of maleic anhydride and octadecanol, and was utilized to surface-modify nano-Fe3O4 particles. A polymerizable magnetic f...Monooctadecyl maleate, as a polymerizable surfactant, was synthesized by the mono-esterification of maleic anhydride and octadecanol, and was utilized to surface-modify nano-Fe3O4 particles. A polymerizable magnetic fluid was obtained by directly dispersing modified nano-Fe3O4 particles into styrene monomer, and the polystyrene/nano-Fe3O4 composite was prepared through free radical polymerization of polymerizable magnetic fluid. The structure and dispersion status in different dispersion phases of modified nano-Fe3O4 particles were studied by Fourier transform infrared (FTIR) spectrometry, X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The experimental results show that the nano-Fe3O4 particles modified by monooctadecyl maleate with the size of about 7-10 nm can be uniformly dispersed into styrene and fixed in the composite during the procedure of polymerization. Thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM) indicate that the thermal stability of polystyrene/nano-Fe3O4 composite is improved compared to that of pure polystyrene, and the composite is a sort of superparamagnetic materials.展开更多
基金Funded by the Science Foundation of Hubei Province of China(2015CFB706)。
文摘Artificial zeolite was modified by nano-Fe3O4 for development of functional adsorbents.Subsequently,adsorbents such as calcium cross-linked nano-Fe3O4 microspheres (Ca-MS),calcium cross-linked nano-Fe3O4 modified zeolite microspheres (Ca-MZS) and iron cross-linked nano-Fe3O4 modified zeolite microspheres (Fe-MZS) were prepared and compared for their adsorption performance.The effects of adsorbent dosage,solution pH,initial concentration and ion content on the removal of Cu^2+ from wastewater are investigated,and the adsorption kinetics and isotherms for the adsorbent materials were analyzed.The experimental results indicate that for the initial concentration of Cu^2+ of 30 mg/L,the adsorption is noted to be most stable.The optimal initial pH for adsorbing Cu^2+ is observed to be 5.5.At an optimal dosage of Ca-MZS of 900 mg/L,the adsorption capacity is measured to be 28.25 mg/g,along with the removal rate of 72.49%.The addition of Na+ and K+ affects the adsorption of Cu^2+.For the Na^+ and K^+ concentration of 0.2 mmol/L,the Cu^2+ removal rate by Ca-MZS drops to 11.94% and 22.12%,respectively.As compared with the adsorbents such as Natural Zeolite (NZ),Ca-MS and Fe-MZS,Ca-MZS demonstrates the best removal effect in solution,where the removal rate reaches 84.27%,with the maximum adsorption capacity of 28.09 mg/g.The Cu^2+ adsorption kinetics of Ca-MZS is observed to follow the Elovich kinetic model,with the adsorption isotherm data fitting the Freundlich isotherm model by using the non-linear method.
文摘With the rapid development of nanotechnology and widespread use of nanoproducts, concerns have arisen regarding the ecotoxicity of these materials. In this paper, the photosynthetic toxicity and oxidative damage induced by nano Fe3O4 on a model organism, Chlorella vulgaris (C. vulgaris) in aquatic environment, were studied. The results showed that Nano-Fe3O4 was toxic to C. vulgaris and affected its content of chlorophyll a, malonaldehyde and glutathione, CO2 absorption, net photosynthetic rate, superoxide dismutase activity and inhibition of hydroxyl radical generation. At higher concentrations, compared with the control group, the toxicity of nano-Fe3O4 was significantly different. It suggested that nano-Fe3O4 is ecotoxic to C. vulgaris in aquatic environment.
基金Supported by the National Natural Science Foundation of China(No.50174014)
文摘A new composite adsorbent, nano-Fe3O4/bacterial cellulose(BC), was prepared through blending method. The process of adsorbing Cd2+ including its isotherm and kinetics measured was studied. The results show that the adsorption efficiency is improved because of huge surface area and surface coordination of nano-Fe3O4 particles. Its adsorption capacity is 27.97 mg/g and the maximum of Cd2+ removal is 74%. The adsorption kinetics can be described by pseudo-second rate model and the adsorption equilibrium by Langmuir type. The superparamagnetism of nano-Fe3O4 particles can help to solve the difficult separation of single BC adsorbent and lead to the quick separation of composite adsorbent from the liquid if a magnetic field was applied. Cd2+ can be desorbed effectively by EDTA and HCl from the composite adsorbent, which can make it be reused.
基金Funded by the Natural Science Foundation of Guangdong Province (No. 020891)
文摘Monooctadecyl maleate, as a polymerizable surfactant, was synthesized by the mono-esterification of maleic anhydride and octadecanol, and was utilized to surface-modify nano-Fe3O4 particles. A polymerizable magnetic fluid was obtained by directly dispersing modified nano-Fe3O4 particles into styrene monomer, and the polystyrene/nano-Fe3O4 composite was prepared through free radical polymerization of polymerizable magnetic fluid. The structure and dispersion status in different dispersion phases of modified nano-Fe3O4 particles were studied by Fourier transform infrared (FTIR) spectrometry, X-ray diffraction (XRD) and transmission electron microscopy (TEM), respectively. The experimental results show that the nano-Fe3O4 particles modified by monooctadecyl maleate with the size of about 7-10 nm can be uniformly dispersed into styrene and fixed in the composite during the procedure of polymerization. Thermogravimetric analysis (TGA) and vibrating sample magnetometry (VSM) indicate that the thermal stability of polystyrene/nano-Fe3O4 composite is improved compared to that of pure polystyrene, and the composite is a sort of superparamagnetic materials.