Herein,we report the victorious synthesis of metal-organic frameworks(MOFs) on TiO_2 nanotubes(NTs)using a layer-by-layer(LbL) approach.Highly crystalline and homogenous thin films of MOFs were grown and characterized...Herein,we report the victorious synthesis of metal-organic frameworks(MOFs) on TiO_2 nanotubes(NTs)using a layer-by-layer(LbL) approach.Highly crystalline and homogenous thin films of MOFs were grown and characterized using XRD,SEM,FT-IR and UV/Vis spectroscopy.Moreover,the utilization of the MOF films as sensitizers was probed in bespoke Graetzel type liquid junction solar cells.The constructed cell performance revealed an I_(sc) of 1.16 mA cm^(–2),Vocof 0.63 V,FF of 0.33,and E_(ff) of 0.42%.Further,pumpprobe transient laser spectroscopy was performed to investigate the energy and charge transfer dynamics of the MOFs/TiO_2 NTs interface.The results indicated 86% injection efficiency.The ultrafast pump-probe spectroscopy allows the investigation of this process and the differences between MOFs.It also showed that the relaxation of the MOF chromophores is in competition with electron injection in the Ti O2 motif.Thus this study provides a new insight into electron transfer from photoexcited metal-organic frameworks(MOFs) into titanium dioxide.展开更多
Heterogeneous catalytic combustion provides a feasible technique for high efficient methane utilization.Perovskites ABO_3-type materials have received renewed attention as a potential alternative for noble metals supp...Heterogeneous catalytic combustion provides a feasible technique for high efficient methane utilization.Perovskites ABO_3-type materials have received renewed attention as a potential alternative for noble metals supported catalysts in catalytic methane combustion due to excellent hydrothermal stability and sulfur resistance. Recently, the emergence of nanostructured perovskite oxides(such as threedimensional ordered nanostructure, nano-array structure) with outstanding catalytic activity has further driven methane catalytic combustion research into spotlight. In this review, we summarize the recent development of nanostructured perovskite oxide catalysts for methane combustion, and shed some light on the rational design of high efficient nanostructured perovskite catalysts via lattice oxygen activation,lattice oxygen mobility and materials morphology engineering. The emergent issues needed to be addressed on perovskite catalysts were also proposed.展开更多
The tunable mid-infrared source in a broad-spectrum heralds great scientific implications and remains a challenge.Nanolocalized catalytic combustion facilitates access to customizable infrared light sources.Here,we re...The tunable mid-infrared source in a broad-spectrum heralds great scientific implications and remains a challenge.Nanolocalized catalytic combustion facilitates access to customizable infrared light sources.Here,we report on fabricating platinumalumina bilayer nano-cylinder arrays for methanol catalytic combustion,which enables them to act as an array of infrared point light sources,with wavelength tunable by controlling the flow rate of methanol/air mixture.We then propose a technique of integrating nanophotonic structures with catalytic combustion to engineer infrared light emission.We demonstrate a prototype of a topological photonic crystal catalyst array in which infrared emission can be enhanced significantly with highly vertical emission.This work establishes a framework of nanophotonic catalytic combustion for infrared light sources.展开更多
Dip-pen nanolithography is an emerging and attractive surface modification technique that has the capacity to directly and controllably write micro/nano-array patterns on diverse substrates.The superior throughput,res...Dip-pen nanolithography is an emerging and attractive surface modification technique that has the capacity to directly and controllably write micro/nano-array patterns on diverse substrates.The superior throughput,resolution,and registration enable DPN an outstanding candidate for biological detection from the molecular level to the cellular level.Herein,we overview the technological evolution of DPN in terms of its advanced derivatives and DPN-enabled versatile sensing patterns featuring multiple compositions and structures for biosensing.Benefitting from uniform,reproducible,and large-area array patterns,DPN-based biosensors have shown high sensitivity,excellent selectivity,and fast response in target analyte detection and specific cellular recognition.We anticipate that DPN-based technologies could offer great potential opportunities to fabricate multiplexed,programmable,and commercial array-based sensing biochips.展开更多
基金funded by the Science and Technology Development Fund in Egypt (STDF),project number 12323
文摘Herein,we report the victorious synthesis of metal-organic frameworks(MOFs) on TiO_2 nanotubes(NTs)using a layer-by-layer(LbL) approach.Highly crystalline and homogenous thin films of MOFs were grown and characterized using XRD,SEM,FT-IR and UV/Vis spectroscopy.Moreover,the utilization of the MOF films as sensitizers was probed in bespoke Graetzel type liquid junction solar cells.The constructed cell performance revealed an I_(sc) of 1.16 mA cm^(–2),Vocof 0.63 V,FF of 0.33,and E_(ff) of 0.42%.Further,pumpprobe transient laser spectroscopy was performed to investigate the energy and charge transfer dynamics of the MOFs/TiO_2 NTs interface.The results indicated 86% injection efficiency.The ultrafast pump-probe spectroscopy allows the investigation of this process and the differences between MOFs.It also showed that the relaxation of the MOF chromophores is in competition with electron injection in the Ti O2 motif.Thus this study provides a new insight into electron transfer from photoexcited metal-organic frameworks(MOFs) into titanium dioxide.
基金the financial support from the Recruitment Program of Global Young Experts Start-up Fundthe Program of Introducing Talents of Discipline to Universities of China(111 Program, No. B17019)
文摘Heterogeneous catalytic combustion provides a feasible technique for high efficient methane utilization.Perovskites ABO_3-type materials have received renewed attention as a potential alternative for noble metals supported catalysts in catalytic methane combustion due to excellent hydrothermal stability and sulfur resistance. Recently, the emergence of nanostructured perovskite oxides(such as threedimensional ordered nanostructure, nano-array structure) with outstanding catalytic activity has further driven methane catalytic combustion research into spotlight. In this review, we summarize the recent development of nanostructured perovskite oxide catalysts for methane combustion, and shed some light on the rational design of high efficient nanostructured perovskite catalysts via lattice oxygen activation,lattice oxygen mobility and materials morphology engineering. The emergent issues needed to be addressed on perovskite catalysts were also proposed.
基金supported by the Shanghai Science and Technology Committee(Nos.10520710400,10PJ1403800,and 11DZ1111200)Sichuan Science and Technology Program(Nos.2021JDRC0022 and 2022YFSY0023).
文摘The tunable mid-infrared source in a broad-spectrum heralds great scientific implications and remains a challenge.Nanolocalized catalytic combustion facilitates access to customizable infrared light sources.Here,we report on fabricating platinumalumina bilayer nano-cylinder arrays for methanol catalytic combustion,which enables them to act as an array of infrared point light sources,with wavelength tunable by controlling the flow rate of methanol/air mixture.We then propose a technique of integrating nanophotonic structures with catalytic combustion to engineer infrared light emission.We demonstrate a prototype of a topological photonic crystal catalyst array in which infrared emission can be enhanced significantly with highly vertical emission.This work establishes a framework of nanophotonic catalytic combustion for infrared light sources.
文摘Dip-pen nanolithography is an emerging and attractive surface modification technique that has the capacity to directly and controllably write micro/nano-array patterns on diverse substrates.The superior throughput,resolution,and registration enable DPN an outstanding candidate for biological detection from the molecular level to the cellular level.Herein,we overview the technological evolution of DPN in terms of its advanced derivatives and DPN-enabled versatile sensing patterns featuring multiple compositions and structures for biosensing.Benefitting from uniform,reproducible,and large-area array patterns,DPN-based biosensors have shown high sensitivity,excellent selectivity,and fast response in target analyte detection and specific cellular recognition.We anticipate that DPN-based technologies could offer great potential opportunities to fabricate multiplexed,programmable,and commercial array-based sensing biochips.