Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/ge...Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/gelatin nanocomposite was first developed.The nanocomposites have much better mechanical properties(elongation at break 29.9%,tensile strength 90.7 MPa,Young’s modulus 5.24 GPa)than pure gelatin films(elongation at break 9.3%,tensile strength 90.8 MPa,Young’s modulus 2.5 GPa).In addition,the composite films keep a high transmittance in visible wavelength range from 0%to 60%of the HA solid content.These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules.This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications.展开更多
Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and t...Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride.展开更多
The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal...The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.展开更多
Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_...Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.展开更多
Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti ...Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti alloys and to produce TiO_(2) films with enhanced bone formation abilities.Scanning electron microscopy coupled with energy dispersive spectroscopy(SEM−EDS)and atomic force microscopy(AFM)were applied to investigate the morphological,chemical,and surface topography of the prepared alloys and to confirm the growth of hydroxyapatite(HA)on their surfaces.Results disclosed that the surface roughness of TiO_(2) films formed on Ti−6Al−7Nb alloys was superior to that of Ti−6Al−4V alloys.Ti−6Al−7Nb alloy anodized at 80 V had the highest yields of HA after immersion in simulated body fluid with enhanced HA surface coverage.The developed HA layer had a mean thickness of(128.38±18.13)μm,suggesting its potential use as an orthopedic implantable material due to its promising bone integration and,hence,remarkable stability inside the human body.展开更多
The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure wer...The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure were characterized respectively by different detecting techniques. The results reveal that the particles are highly crystalline hydroxyapatite phase. The surfactant has little influence on the morphology of the crystals, but affects the porous structure obviously. The sample without CTAB has a low surface area not exceeding 33 m^2/g, and no distinct pores can be observed by TEM. While the samples obtained with the surfactant get better parameters. Numerous open-ended pores centered at 2-7 nm spread unequally on the surface of the hydroxyapatite nanorods. The N2 adsorption-desorption experiments show type IV isotherms with distinct hysteresis loops, illustrating the presence of mesoporous structure. When the mole ratio of CTAB to HA is 1:2, the sample has the largest surface area of 97.1 m^2/g and pore volume of 0.466 cm^3/g.展开更多
In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite...In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite size and zeta potential of the HAp/Arg were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and zeta potential analyzer. The loading and protecting properties of HAp/Arg to DNA were tested by electrophoresis. Its cytotoxicity was also measured in Hela cells and HAEC cells by MTT and LDH, and its transfection efficiency was examined by fluorescence microscope and flow cytometry. The results reveal that HAp/Arg is short rod-like and nano single crystal, the mean diameter is 50-90 nm and zeta potential is 35.8 mV at pH 7.4. HAp/Arg to DNA can be condensed by electrostatic effect and protect DNA against degradation in DNase I, and shows high transfection efficiency without cytotoxicity. These results suggest that HAp/Arg can be a promising alternative as a novel gene delivery system.展开更多
The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hyd...The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.展开更多
The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray...The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray diffractometry(XRD),Fourier transform infrared(FTIR) and zeta potential analyzer.The cell viability of HAP-Eu was tested by image flow cytometry.The results indicated that HAP-Eu is short column shapes and its size is approximately 100 nm,its zeta potential is about 30.10 mV at pH of 7.5,and shows no cytotoxicity in human epithelial cells and endothelial cells.展开更多
Objective:To investigate possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Methods: With sol-gel method, the nanophase hydroxyapatite powders were fabricated. These...Objective:To investigate possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Methods: With sol-gel method, the nanophase hydroxyapatite powders were fabricated. These powders were proved nanopaticles by transmission electron microscope. The effects on proliferation of periodontal ligament cell(PDLC) were observed in vitro with MTT [3-(4,5dimethylthiazo;-2-yl)-2,5-diphenytetralium bromide] method. Results: On the 2nd,3rd,4th day after treated with nanoparticles of hydroxyapatite, the proliferate activity of the PDLC increases significantly, compared with those with dense hydroxyaoatite and control but no significant difference could be found between the dense hydroxyapatite and the control. Conclusion: Nanophase hydroxyapatite can promote the regeneration of periodontal tissue.展开更多
Stable and single dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell ...Stable and single dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel 7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G 1 phase of cell cycle,thus,cancer cells die directly.展开更多
The hydroxyapatite(HA) ceramic coating was successfully prepared on Ti6A14V alloy by the hydrothermal-electrochemical deposition method with constant voltage model. The phases of deposits were analyzed by X-ray diff...The hydroxyapatite(HA) ceramic coating was successfully prepared on Ti6A14V alloy by the hydrothermal-electrochemical deposition method with constant voltage model. The phases of deposits were analyzed by X-ray diffraction. The releationship between crystallinity and depositing temperature was discussed. The microstructures of hydroxyapatite coating were observed by scanning electron microscope. The experimental results showed that the phases, crystaUinity and morphologies of deposits were influenced by depositing temperature (100℃, 120℃, 140℃, 160℃, 180℃ and 200℃, respectively). The special hydrothermal environment can lower the crystallization temperature of HA. The crystallinity of HA increases firstly and then decreases with the increase of temperature. There is little hydroxyapatite deposited on the Ti6A14V surface when the depositing temperature is 100℃. The HA deposition increases with the increase of the depositing temperature. And the HA morphologies are influenced by the depositing temperature.展开更多
A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n cop...A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.展开更多
The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2and (NH4)2HPO4 r...The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2and (NH4)2HPO4 reagents in aqueous solution at room temperature. The adsorption experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent dosage, initial dye concentration, solution temperature, and pH. The experimental results show that the percentage of dye removal increases with increasing the amount of adsorbent, until the total discoloration. The adsorption isotherms follow the model of Langmuir with a high adsorption capacity. The adsorption was pH and temperature dependent.展开更多
DNA vector-based Stat3-specific RNA interference (si-Stat3) blocks Stat3 signalling and inhibits prostate tumour growth. However, the antitumour activity depends on the efficient delivery of si-Stat3. The effects on...DNA vector-based Stat3-specific RNA interference (si-Stat3) blocks Stat3 signalling and inhibits prostate tumour growth. However, the antitumour activity depends on the efficient delivery of si-Stat3. The effects on the growth of mouse prostate cancer cells of si-Stat3 delivered by hydroxyapatite were determined in this study. RM-1 tumour blocks were transplanted into C57BIJ6 mice. CaCl2-modified hydroxyapatite carrying si-Stat3 plasmids were injected into tumours, and tumour growth and histology were determined. The expression levels of Star3, pTyr-Stat3, Bcl-2, Bax, Caspase3, VEGFand cyclin D1 were measured by western blot analysis. Amounts of apoptosis in cancer cells were analysed with immunohistochemistry and the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay. The results showed that hydroxyapatite-delivered si-Stat3 significantly suppressed tumour growth up to 74% (P〈0.01). Stat3 expression was dramatically downregulated in the tumours. The immunohistochemistry and TUNEL results showed that si-Stat3-induced apoptosis (up to 42%, P〈0.01). The Stat3 downstream genes Bcl-2, VEGFand cyclin DI were also strongly downregulated in the tumour tissues that also displayed significant increases in Bax expression and Caspase3 activity. These results suggest that hydroxyapatite can be used for the in vivo delivery of plasmid-based siRNAs into tumours.展开更多
The growth of hydroxyapatite (HAp) crystal in the presence of hexadecylamine was investigated. Due to its high polarity and high charge density, the organic film could increase the ion supersaturation on its surface. ...The growth of hydroxyapatite (HAp) crystal in the presence of hexadecylamine was investigated. Due to its high polarity and high charge density, the organic film could increase the ion supersaturation on its surface. Therefore the growth of pure HAp crystals was accelerated. Moreover, the positive headgroups of the organic film could act as recognized nucleation sites and orient the growth of HAp crystals along the <0001> direction.展开更多
Fluorapatite/hydroxyapatite solid solution has better biological properties than other apatites, especially used as films or coatings. In this work, sol-gel preparation and in vitro behavior of fluorapatite/hydroxyapa...Fluorapatite/hydroxyapatite solid solution has better biological properties than other apatites, especially used as films or coatings. In this work, sol-gel preparation and in vitro behavior of fluorapatite/hydroxyapatite solid solution films on titanium alloy were investigated. Ca(NO3)2·4H2O and PO(OH)K(OEt)3-x. were selected as precursors, and hexafluorophosphoric acid (HPF6) was used as a fluorine containing reagent. The Ca and P precursors were mixed with HPF6 to keep the Ca/P molar ratio 1.67. The mixtures refluxed for 12 h were used as dipping sols for the preparation of the films. The phase of the films obtained at 600℃ was apatite. The F contents in the films increased with the concentrations of HPF6 in the dipping sols. The solid solution films were shown to have better stability than hydroxyapatite films, and a reasonably good bioactivity in the in vitro evaluation.展开更多
Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[ Ca + Ce] (xco) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method...Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[ Ca + Ce] (xco) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with Xco below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g · mi^-1, however, the Ce- HAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when Xco was above 0.08, and the antibacterial ability gets better with the increase Of Xce, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.展开更多
To investigate the efficiency of clodronate modifying HA bioceramics,and to evaluate the effect of clodronate modifying HA bioceramics on the cells in vitro,clodronate modified the porous HA bioceramics for bone scaff...To investigate the efficiency of clodronate modifying HA bioceramics,and to evaluate the effect of clodronate modifying HA bioceramics on the cells in vitro,clodronate modified the porous HA bioceramics for bone scaffold by chelation .The outermost layer of the specimens was analyzd by XPS and FI-IR ,The depth profile was investigated by the argon-ion sputtering method.The cell culture test was conducted using MC3T3-E1 osteoblastic cells,The cells were inoculated and cultured on the scaffolds.Morphological observation of the cells,MTT test and ALP activity test evaluated the cell attachment ,proliferation and activity on the scaffolds.The cell culture test in cell quantity and morphology indicated active proliferation of the cells on the scaffolds.The ALP activity of the cells cultured for 3d and 7d on clodronate-HA bioceramics was slightly higher than that on HA bioceramics ,but the difference was not signifcant,This result indicated that clodronate-HA bioeramics had favorable cytocompatibility to be used as bone scaffold with potential ability to improve asteogensis.展开更多
Hydroxyapatite powder particles were plasma sprayed into water, their inner structures and phase compositions were studied by using scanning electron microscope(SEM) and X-ray diffractometer. The results show that the...Hydroxyapatite powder particles were plasma sprayed into water, their inner structures and phase compositions were studied by using scanning electron microscope(SEM) and X-ray diffractometer. The results show that the molten HA particles have a central hollow morphology and high crystallinity. The hollow morphology was caused by sublimated P2O5 and H2O, which will have an effect on surface morphology, cohesive and adhesive strength as well as dissolution and degradation of coating. The high crystallinity is attributed to lower cooling speed in water.展开更多
基金Funded by the Natural Science Foundation of Hubei Province(No.2018CFB710)the Opening Fund of Hubei Provincial Key Laboratory of Green Materials for Light Industry(No.202107B07)Hubei University of Technology。
文摘Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/gelatin nanocomposite was first developed.The nanocomposites have much better mechanical properties(elongation at break 29.9%,tensile strength 90.7 MPa,Young’s modulus 5.24 GPa)than pure gelatin films(elongation at break 9.3%,tensile strength 90.8 MPa,Young’s modulus 2.5 GPa).In addition,the composite films keep a high transmittance in visible wavelength range from 0%to 60%of the HA solid content.These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules.This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications.
基金Funded by the National Natural Science Foundation of China(No.52172287)the National Key Research and Development Program of China(No.2021YFA0715700)。
文摘Using a titration setup to accurately control the reaction conditions and in situ monitor the reaction,we showed that fluoride exhibited negligible effects on the ion association process of calcium and phosphate and the formation of ACP nanospheres in a buffer solution with constant ionic strength.However,the stability of ACP increased with increasing fluoride concentration,which was ascribed to the inhibitory effect of fluoride on the aggregation of ACP nanospheres and the nucleation of nanocrystals on the surface of ACP nanospheres.Furthermore,fluoride could inhibit the lateral growth of HAP nanosheets and promote the formation of rod-like crystals.These results further improve our understanding of the crystallization pathway of HAP crystals and the regulatory effects of fluoride.
基金supported by National Natural Science Foundation of China(21978066)Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project(18964308D)the Key Program of Natural Science Foundation of Hebei Province(B2020202048).
文摘The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.
基金funded the World Class Research(WCR)Grant of Universitas Diponegoro with Contract Number 357-36/UN7.D2/PP/IV/2024.
文摘Hydroxyapatite(HA)is a bio ceramic commonly utilized in bone tissue engineering due to its bioactive and osteoconductive properties.Crab shells are usually disregarded as waste material despite their significant CaCO_(3) content,and have not been widely utilized in the synthesis of HA.This study aims to synthesize and analyze HA derived from crab shells using the hydrothermal method with different durations of holding time.This study utilized precipitated calcium carbonate(PCC)derived from crab shells.With a hydrothermal reactor set at 160℃ and varying holding times of 14(HA_14),16(HA_16),and 18(HA_18)h,a PCC and(NH4)2HPO4 mixture was used to synthesize HA.The synthesis results were analyzed using scanning electron microscopy(SEM),fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)tests.This study has accomplished the synthesis of HA from crab shells.Nonetheless,the final product of synthesis still contained CaCO_(3) as an impurity.The prolonged hydrothermal holding time of 14 to 18 h resulted in a reduction of impurities while increasing the percentage of crystal weight and crystallite size of HA.Specimen CH_18 is the best-quality product generated in this study.This specimen produced HA with the highest percentage of crystal weight and crystallite size compared to the other specimens.Furthermore,specimen CH_18 exhibited the lowest concentration of impurities.The Ca/P ratio in this specimen was also the closest to 1.67.The Ca/P ratio,crystallite size,and crystal weight percentage of this specimen are 1.54,19.06 nm,and 99.1%,respectively.
基金financial support from the Science and Technology Development Fund of Egypt (No.5540)。
文摘Integrating titanium-based implants with the surrounding bone tissue remains challenging.This study aims to explore the impact of different anodization voltages(20−80 V)on the surface topography of two-phase(α/β)Ti alloys and to produce TiO_(2) films with enhanced bone formation abilities.Scanning electron microscopy coupled with energy dispersive spectroscopy(SEM−EDS)and atomic force microscopy(AFM)were applied to investigate the morphological,chemical,and surface topography of the prepared alloys and to confirm the growth of hydroxyapatite(HA)on their surfaces.Results disclosed that the surface roughness of TiO_(2) films formed on Ti−6Al−7Nb alloys was superior to that of Ti−6Al−4V alloys.Ti−6Al−7Nb alloy anodized at 80 V had the highest yields of HA after immersion in simulated body fluid with enhanced HA surface coverage.The developed HA layer had a mean thickness of(128.38±18.13)μm,suggesting its potential use as an orthopedic implantable material due to its promising bone integration and,hence,remarkable stability inside the human body.
基金Projects(51102285,81170912)supported by the National Natural Science Foundation of ChinaProject supported by the Open Foundation of State Key Laboratory of Powder Metallurgy,China
文摘The mesoporous hydroxyapatite (HA) was synthesized by hydrothermal method utilizing cationic surfactant cetyltrimethylammonium bromide (CTAB) as template. The crystalline phase, morphology and porous structure were characterized respectively by different detecting techniques. The results reveal that the particles are highly crystalline hydroxyapatite phase. The surfactant has little influence on the morphology of the crystals, but affects the porous structure obviously. The sample without CTAB has a low surface area not exceeding 33 m^2/g, and no distinct pores can be observed by TEM. While the samples obtained with the surfactant get better parameters. Numerous open-ended pores centered at 2-7 nm spread unequally on the surface of the hydroxyapatite nanorods. The N2 adsorption-desorption experiments show type IV isotherms with distinct hysteresis loops, illustrating the presence of mesoporous structure. When the mole ratio of CTAB to HA is 1:2, the sample has the largest surface area of 97.1 m^2/g and pore volume of 0.466 cm^3/g.
基金Project(2013SK2024)supported by the Key Projects in Social Development Pillar Program of Hunan Province,ChinaProject(20130162120094)supported by Specialized Research Fund for the Doctoral Program of Higher Education(SRFDP),Ministry of Education,ChinaProjects(81071869,51305464)supported by the National Natural Science Foundation of China
文摘In order to further improve the transfection efficiency of hydroxyapatite nanoparticle (HAp), arginine functionalized hydroxyapatite (HAp/Arg) was synthesized by hydrothermal synthesis. The morphology, crystallite size and zeta potential of the HAp/Arg were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and zeta potential analyzer. The loading and protecting properties of HAp/Arg to DNA were tested by electrophoresis. Its cytotoxicity was also measured in Hela cells and HAEC cells by MTT and LDH, and its transfection efficiency was examined by fluorescence microscope and flow cytometry. The results reveal that HAp/Arg is short rod-like and nano single crystal, the mean diameter is 50-90 nm and zeta potential is 35.8 mV at pH 7.4. HAp/Arg to DNA can be condensed by electrostatic effect and protect DNA against degradation in DNase I, and shows high transfection efficiency without cytotoxicity. These results suggest that HAp/Arg can be a promising alternative as a novel gene delivery system.
文摘The mixture of CaHPO 4·2H 2O and CaCO 3 was ground in an aqueous system under appropriate conditions to investigate the mechanochemical reaction for the synthesis of crystalline hydroxyapatite (HA) powder. Hydroxyapatite of high crystallinity powder including trace Ca 10 (PO 4) 6CO 3(OH) and Ca 9HPO 4(PO 4) 6OH can be synthesized by mechanical activation without further thermal treatment at a high temperature. The synthesis reaction during the grinding process was almost completed within 1h. The as-ground powder exhibits a particle distribution of 20-100nm in size with a spherical or rodlike morphology. The composition and degree of crystallinity of the mechanochemical synthesized hydroxyapatite powders were coincident with the cement-type hydroxyapatite.
基金Project (81071869) supported by the National Natural Science Foundation of China Project (2009637526) supported by China Scholarship Council (CSC Program)Project (2010QZZD006) supported by the Key Program of Central South University Advancing Front Foundation
文摘The arginine-modified and europium-doped hydroxyapatite nanoparticles(HAP-Eu) were synthesized by hydrothermal synthesis.The prepared nanoparticles were characterized by transmission electron microscopy(TEM),X-ray diffractometry(XRD),Fourier transform infrared(FTIR) and zeta potential analyzer.The cell viability of HAP-Eu was tested by image flow cytometry.The results indicated that HAP-Eu is short column shapes and its size is approximately 100 nm,its zeta potential is about 30.10 mV at pH of 7.5,and shows no cytotoxicity in human epithelial cells and endothelial cells.
文摘Objective:To investigate possible effects of nanophase powder of hydroxyapatite on proliferation of periodontal ligament cells. Methods: With sol-gel method, the nanophase hydroxyapatite powders were fabricated. These powders were proved nanopaticles by transmission electron microscope. The effects on proliferation of periodontal ligament cell(PDLC) were observed in vitro with MTT [3-(4,5dimethylthiazo;-2-yl)-2,5-diphenytetralium bromide] method. Results: On the 2nd,3rd,4th day after treated with nanoparticles of hydroxyapatite, the proliferate activity of the PDLC increases significantly, compared with those with dense hydroxyaoatite and control but no significant difference could be found between the dense hydroxyapatite and the control. Conclusion: Nanophase hydroxyapatite can promote the regeneration of periodontal tissue.
文摘Stable and single dispersed HAP nanoparticles were synthesized with chemical method assisted by ultrasonic treatment.HAP nanoparticles were surveyed by AFM and Zataplus.The effect on the Bel-7402 human hepatoma cell lines treated with HAP nanoparticles was investigated by the MTT methods and observation of morphology,and the mechanism was studied in changes of cell cycle and ultrastructure.The result shows that inhibition of HAP nanoparticles on the Bel 7402 human hepatoma cell lines is obviously in vitro.HAP nanoparticles the entered cancer cytoplasm,and cell proliferation is stopped at G 1 phase of cell cycle,thus,cancer cells die directly.
基金Funded in Part by the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology)(2013-KF7)the Research Fund of Science and Technology Commission of Shanghai Municipality(Nos.09ZR1422100,11441900500,11441900501)
文摘The hydroxyapatite(HA) ceramic coating was successfully prepared on Ti6A14V alloy by the hydrothermal-electrochemical deposition method with constant voltage model. The phases of deposits were analyzed by X-ray diffraction. The releationship between crystallinity and depositing temperature was discussed. The microstructures of hydroxyapatite coating were observed by scanning electron microscope. The experimental results showed that the phases, crystaUinity and morphologies of deposits were influenced by depositing temperature (100℃, 120℃, 140℃, 160℃, 180℃ and 200℃, respectively). The special hydrothermal environment can lower the crystallization temperature of HA. The crystallinity of HA increases firstly and then decreases with the increase of temperature. There is little hydroxyapatite deposited on the Ti6A14V surface when the depositing temperature is 100℃. The HA deposition increases with the increase of the depositing temperature. And the HA morphologies are influenced by the depositing temperature.
文摘A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.
文摘The present study has been undertaken to evaluate the adsorption in batch mode of a disperse dye (Disperse Blue SBL) by poorly crystalline hydroxyapatite synthesized by coprecipitation between Ca(NO3)2and (NH4)2HPO4 reagents in aqueous solution at room temperature. The adsorption experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, adsorbent dosage, initial dye concentration, solution temperature, and pH. The experimental results show that the percentage of dye removal increases with increasing the amount of adsorbent, until the total discoloration. The adsorption isotherms follow the model of Langmuir with a high adsorption capacity. The adsorption was pH and temperature dependent.
基金The authors would thank Mr Qiang-Lin Duan for English usage and paper revision.This work was funded by the National Natural Science Foundation of China (No. 30801354, No. 30970791 and No. 30870921), the Fundamental Research Funds for the Central Universities of China (No. 200810012) and the Jilin Provincial Science & Technology Department, China (No. 20080154).
文摘DNA vector-based Stat3-specific RNA interference (si-Stat3) blocks Stat3 signalling and inhibits prostate tumour growth. However, the antitumour activity depends on the efficient delivery of si-Stat3. The effects on the growth of mouse prostate cancer cells of si-Stat3 delivered by hydroxyapatite were determined in this study. RM-1 tumour blocks were transplanted into C57BIJ6 mice. CaCl2-modified hydroxyapatite carrying si-Stat3 plasmids were injected into tumours, and tumour growth and histology were determined. The expression levels of Star3, pTyr-Stat3, Bcl-2, Bax, Caspase3, VEGFand cyclin D1 were measured by western blot analysis. Amounts of apoptosis in cancer cells were analysed with immunohistochemistry and the terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) assay. The results showed that hydroxyapatite-delivered si-Stat3 significantly suppressed tumour growth up to 74% (P〈0.01). Stat3 expression was dramatically downregulated in the tumours. The immunohistochemistry and TUNEL results showed that si-Stat3-induced apoptosis (up to 42%, P〈0.01). The Stat3 downstream genes Bcl-2, VEGFand cyclin DI were also strongly downregulated in the tumour tissues that also displayed significant increases in Bax expression and Caspase3 activity. These results suggest that hydroxyapatite can be used for the in vivo delivery of plasmid-based siRNAs into tumours.
文摘The growth of hydroxyapatite (HAp) crystal in the presence of hexadecylamine was investigated. Due to its high polarity and high charge density, the organic film could increase the ion supersaturation on its surface. Therefore the growth of pure HAp crystals was accelerated. Moreover, the positive headgroups of the organic film could act as recognized nucleation sites and orient the growth of HAp crystals along the <0001> direction.
基金Zhejiang Provincial Natural Science Foundation of China(598061)the research fund of the Doctoral Program of Higher Education(98033536)China-Portugal Cooperation Project for supporting the work.
文摘Fluorapatite/hydroxyapatite solid solution has better biological properties than other apatites, especially used as films or coatings. In this work, sol-gel preparation and in vitro behavior of fluorapatite/hydroxyapatite solid solution films on titanium alloy were investigated. Ca(NO3)2·4H2O and PO(OH)K(OEt)3-x. were selected as precursors, and hexafluorophosphoric acid (HPF6) was used as a fluorine containing reagent. The Ca and P precursors were mixed with HPF6 to keep the Ca/P molar ratio 1.67. The mixtures refluxed for 12 h were used as dipping sols for the preparation of the films. The phase of the films obtained at 600℃ was apatite. The F contents in the films increased with the concentrations of HPF6 in the dipping sols. The solid solution films were shown to have better stability than hydroxyapatite films, and a reasonably good bioactivity in the in vitro evaluation.
文摘Nanoparticles of hydroxyapatite (HAP) and cerium substituted hydroxyapatite (CeHAP) with the atomic ratio of Ce/[ Ca + Ce] (xco) from 0 to 0.2 were prepared by sol-gel-supercritical fluid drying (SCFD) method. The nanoparticles were characterized by TEM, XRD, and FT-IR, and the effects of cerium on crystal structure, crystallinity, and particle shape were discussed. With the tests of bacterial inhibition zone and antibacterial ratio, the antibacterial property of HAP and CeHAP nanoparticles on Escherichia coli, Staphylococcus aureus, Lactobacillus were researched. Results showed that the nanoparticles of HAP and CeHAP could be made by sol-gel-SCFD, cerium could partially substitute for calcium and enter the structure of HAP. After substitution, the crystallinity, the IR wavenumbers of bonds in CeHAP decreased gradually with increase of cerium substitution, and the morphology of the nanoparticles changed from the short rod-shaped HAP to the needle-shaped CeHAP. The nanoparticles of HAP and CeHAP with Xco below 0.08 had antibacterial property only forcibly contacting with the test bacteria at the test concentration of 0.1 g · mi^-1, however, the Ce- HAP nanoparticles had antibacterial ability at that concentration no matter statically or dynamically contacting with the test bacteria when Xco was above 0.08, and the antibacterial ability gets better with the increase Of Xce, indicating that the antibacterial property was improved after calcium was partially substituted by cerium. The improved antibacterial effects of CeHAP nanoparticle on Lactobacillus showed its potential ability to anticaries.
文摘To investigate the efficiency of clodronate modifying HA bioceramics,and to evaluate the effect of clodronate modifying HA bioceramics on the cells in vitro,clodronate modified the porous HA bioceramics for bone scaffold by chelation .The outermost layer of the specimens was analyzd by XPS and FI-IR ,The depth profile was investigated by the argon-ion sputtering method.The cell culture test was conducted using MC3T3-E1 osteoblastic cells,The cells were inoculated and cultured on the scaffolds.Morphological observation of the cells,MTT test and ALP activity test evaluated the cell attachment ,proliferation and activity on the scaffolds.The cell culture test in cell quantity and morphology indicated active proliferation of the cells on the scaffolds.The ALP activity of the cells cultured for 3d and 7d on clodronate-HA bioceramics was slightly higher than that on HA bioceramics ,but the difference was not signifcant,This result indicated that clodronate-HA bioeramics had favorable cytocompatibility to be used as bone scaffold with potential ability to improve asteogensis.
文摘Hydroxyapatite powder particles were plasma sprayed into water, their inner structures and phase compositions were studied by using scanning electron microscope(SEM) and X-ray diffractometer. The results show that the molten HA particles have a central hollow morphology and high crystallinity. The hollow morphology was caused by sublimated P2O5 and H2O, which will have an effect on surface morphology, cohesive and adhesive strength as well as dissolution and degradation of coating. The high crystallinity is attributed to lower cooling speed in water.