Nano-catalysts containing copper–cobalt oxides(Cu–Co–O) have been synthesized by the citric acid(CA) complexing method. Copper(II) nitrate and Cobalt(II) nitrate were employed in different molar ratios as the start...Nano-catalysts containing copper–cobalt oxides(Cu–Co–O) have been synthesized by the citric acid(CA) complexing method. Copper(II) nitrate and Cobalt(II) nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope(SEM), Energy Dispersive Spectroscopy(EDS) and Fourier Transform Infrared Spectroscopy(FTIR) methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, Cu Co-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of Cu Co-I nano-catalyst.展开更多
Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust ve...Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides(MOs),complexes, metal powders and metal alloys have shown positive catalytic behaviour during the combustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.展开更多
Supported metal nanoparticles(NPs)as an important heterogeneous catalyst have been widely applied in various industrial processes.During the catalytic reaction,size of the particles plays an important role in determin...Supported metal nanoparticles(NPs)as an important heterogeneous catalyst have been widely applied in various industrial processes.During the catalytic reaction,size of the particles plays an important role in determining their catalytic performance.Generally,the small particles exhibit superior catalytic activity in comparison with the larger particles because of an increase in lowcoordinated metal atoms on the particle surface that work as active sites,such as edges and corner atoms.However,these small NPs are typically unstable and tend to migrate and coalescence to reduce their surface free energy during the real catalytic processes,particularly in high-temperature reactions.Therefore,a means to fabricate stable small metal NP catalysts with excellent sinter-resistant performance is necessary for maintaining their high catalytic activity.In this study,we have summarized recent advances in stabilizing metal NPs from two aspects including thermodynamic and kinetic strategies.The former mainly involve preparing uniform NPs(with an identical size and homogeneous distribution)in order to restrain Ostwald ripening to achieve stability,while the latter primarily involves fixing metal NPs in some special confinement materials(e.g.,zeolites,mesoporous silica and mesoporous carbons),encapsulating NPs using an oxide-coating film(e.g.,forming core-shell structures),or constructing strong metal-support interactions to improve stability.At the end of this review,we highlight our recent work on the preparation of high-stability metal catalysts via a unique interfacial plasma electrolytic oxidation technology,that is,metal NPs are well embedded in a porous MgO layer that has both high thermal stability and excellent catalytic activity.展开更多
Environmental pollution caused by the presence of aromatic aldehydes and dyes in wastewater is a serious global concern. An effective strategy for the removal of these pollutants is their catalytic conversion, possibl...Environmental pollution caused by the presence of aromatic aldehydes and dyes in wastewater is a serious global concern. An effective strategy for the removal of these pollutants is their catalytic conversion, possibly to valuable compounds. Therefore, the design of efficient, stable and long-lifetime catalysts is a worthwhile research goal. Herein, we used nanofibrous carbon microspheres (NCM) derived from the carbohydrate chitin present in seafood waste, and characterized by interconnected nanofibrous networks and N/O-containing groups, as carriers for the manufacture of a highly dispersed, efficient and stable Pd nano-catalyst (mean diameter ca. 2.52 nm). Importantly, the carbonised chitin’s graphitized structure, defect presence and large surface area could promote the transport of electrons between NCM and Pd, thereby endowing NCM supported Pd catalyst with high catalytic activity. The NCM supported Pd catalyst was employed in the degradation of some representative dyes and the chemoselective hydrogenation of aromatic aldehydes;this species exhibited excellent catalytic activity and stability, as well as applicability to a broad range of aromatic aldehydes, suggesting its potential use in green industrial catalysis.展开更多
Nature has provided us the assurance and inspiration for thousands of years in synthesizing value-added chemicals,with the assistance of reactive hydrogen species,and water as the ultimate hydrogen source.However,the ...Nature has provided us the assurance and inspiration for thousands of years in synthesizing value-added chemicals,with the assistance of reactive hydrogen species,and water as the ultimate hydrogen source.However,the natural photosynthesis is inefficient due to some intrinsic properties,urging people not only to learn from but also surpass during nature imitation.In this review,we summarized recent progresses on reactive hydrogen species-assisted nanocatalytic reduction of organic molecules towards value-added fine chemicals and pharmaceuticals,with water as the hydrogen source,and especially highlighted how photocatalytically or electrocatalytically evolved reactive hydrogen species synergize with biocatalytic centers and nanocatalytic sites for reduction of organic molecules.The design principles of collaborative semi-artificial systems and nanocatalytic artificial systems,the structure tuning of catalysts for the evolution and utilization of hydrogen species,and the determination of reactive hydrogen species for mechanistic insights were discussed in detail.Finally,perspectives were provided for further advancing this emerging area of nanocatalytic reduction of organic molecules from water(or proton)and organics.展开更多
Pd-based egg-shell nano-catalysts were prepared using porous hollow silica nanoparticles (PHSNs) as support, and the as-prepared catalysts were modified with TiO2 to promote their selectivity for hydro-genation of a...Pd-based egg-shell nano-catalysts were prepared using porous hollow silica nanoparticles (PHSNs) as support, and the as-prepared catalysts were modified with TiO2 to promote their selectivity for hydro-genation of acetylene. Pd nanoparticles were loaded evenly on PHSNs and TiO2 was loaded on the active Pd particles. The effects of reduction time and temperature and the amount of TiO2 added on catalytic per-formances were investigated by using a fixed-bed micro-reactor. It was found that the catalysts showed better performance when reduced at 300 ℃ than at 500℃, and if reduced for 1 h than 3 h. When the amount of Ti added was 6 times that of Pd, the catalyst showed the highest ethylene selectivity.展开更多
Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clus...Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clusters(CNCs) as nano-core were modified with a silica coating for improvement stability and superficial area of the Au-Cu particles. The morphological structure and chemical composition of the Fe_3O_4@SiO_2-Au/Cu NPs were characterized with high-resolution transmission electron microscopy(HRTEM), energy-dispersive X-ray(EDX) and X-ray photoelectron spectroscopy(XPS) analyses. The Au and Cu NPs were deposited on the SiO_2 surface in a highly dense and well dispersed manner with an average size of approximately 5 nm. The Fe_3O_4@SiO_2-Au/Cu NPs as magnetic nano-catalysts were applied to the Ullmann coupling reaction of bromamine acid to synthesize 4,40-diamino-1,10-dianthraquinonyl-3,30-disulfonic acid(DAS). The prepared Fe_3O_4@SiO_2-Au/Cu NPs exhibited efficient catalytic activity with higher conversion and selectivity. A bromamine acid conversion of 97.35% and selectivity for DAS of 88.67% were obtained in aqueous medium. The magnetic nano-catalysts can be readily separated from the reaction system and reused. This new nano-catalytic reaction represents a useful and attractive cleaner production system. The new catalyst system has important and potential applications in dye and pigment industry.展开更多
Magnetically separable CuO nanoparticles supported on graphene oxide(Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH,at 90 C.Fe3O4 NPs/GOCuO NPs is found to be a...Magnetically separable CuO nanoparticles supported on graphene oxide(Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH,at 90 C.Fe3O4 NPs/GOCuO NPs is found to be an efficient catalyst for the A^3-coupling of aldehydes,amines,and alkynes through C-H activation.Both aromatic and aliphatic aldehydes and alkynes are combined with secondary amines to provide a wide range of propargylamines in moderate to excellent yields.展开更多
文摘Nano-catalysts containing copper–cobalt oxides(Cu–Co–O) have been synthesized by the citric acid(CA) complexing method. Copper(II) nitrate and Cobalt(II) nitrate were employed in different molar ratios as the starting reactants to prepare three types of nano-catalysts. Well crystalline nano-catalysts were produced after a period of 3 hours by the calcination of CA–Cu–Co–O precursors at 550 °C. The phase morphologies and crystal composition of synthesized nano-catalysts were examined using Scanning Electron Microscope(SEM), Energy Dispersive Spectroscopy(EDS) and Fourier Transform Infrared Spectroscopy(FTIR) methods. The particle size of nano-catalysts was observed in the range of 90 nm–200 nm. The prepared nano-catalysts were used to formulate propellant samples of various compositions which showed high reactivity toward the combustion of HTPB/AP-based composite solid propellants. The catalytic effects on the decomposition of propellant samples were found to be significant at higher temperatures. The combustion characteristics of composite solid propellants were significantly improved by the incorporation of nano-catalysts. Out of the three catalysts studied in the present work, Cu Co-I was found to be the better catalyst in regard to thermal decomposition and burning nature of composite solid propellants. The improved performance of composite solid propellant can be attributed to the high crystallinity, low agglomeration and lowering the decomposition temperature of oxidizer by the addition of Cu Co-I nano-catalyst.
文摘Composite solid propellants(CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides(MOs),complexes, metal powders and metal alloys have shown positive catalytic behaviour during the combustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.
基金financially supported by the National Natural Science Foundation of China (Nos.51601032, 51971059,5197010432)the Fundamental Research Funds for the Central Universities (Nos.N170204015,N180204014)the Provincial Science and Technology Project/Doctor Start Fund (No. 20170520385).
文摘Supported metal nanoparticles(NPs)as an important heterogeneous catalyst have been widely applied in various industrial processes.During the catalytic reaction,size of the particles plays an important role in determining their catalytic performance.Generally,the small particles exhibit superior catalytic activity in comparison with the larger particles because of an increase in lowcoordinated metal atoms on the particle surface that work as active sites,such as edges and corner atoms.However,these small NPs are typically unstable and tend to migrate and coalescence to reduce their surface free energy during the real catalytic processes,particularly in high-temperature reactions.Therefore,a means to fabricate stable small metal NP catalysts with excellent sinter-resistant performance is necessary for maintaining their high catalytic activity.In this study,we have summarized recent advances in stabilizing metal NPs from two aspects including thermodynamic and kinetic strategies.The former mainly involve preparing uniform NPs(with an identical size and homogeneous distribution)in order to restrain Ostwald ripening to achieve stability,while the latter primarily involves fixing metal NPs in some special confinement materials(e.g.,zeolites,mesoporous silica and mesoporous carbons),encapsulating NPs using an oxide-coating film(e.g.,forming core-shell structures),or constructing strong metal-support interactions to improve stability.At the end of this review,we highlight our recent work on the preparation of high-stability metal catalysts via a unique interfacial plasma electrolytic oxidation technology,that is,metal NPs are well embedded in a porous MgO layer that has both high thermal stability and excellent catalytic activity.
基金This work was supported by the Guizhou Provincial Science and Technology Foundation(Grant No.[2020]1Y212)the Science and Technology Top Talent Project of Guizhou Province(Grant No.[2021]029)+6 种基金the National Natural Science Foundation of China(Grant Nos.52063008 and 52103124)the Graduate Education Innovation Project of Guizhou Province(Grant No.[2020]099)the Guizhou Province Science and Technology Plan Project(Grant No.ZK[2021]Key 050)the Guizhou Key Laboratory of Inorganic Nonmetallic Functional Materials(Grant No.[2022]012)the Hundred Talents Project of Guizhou Province(Grant No.[2016]5673)the Lightweight Materials Engineering Research Center of the Education Department of Guizhou(Grant No.[2022]045)the Guizhou Province Science and Technology Support Plan(Grant Nos.[2020]4Y063 and[2021]04).
文摘Environmental pollution caused by the presence of aromatic aldehydes and dyes in wastewater is a serious global concern. An effective strategy for the removal of these pollutants is their catalytic conversion, possibly to valuable compounds. Therefore, the design of efficient, stable and long-lifetime catalysts is a worthwhile research goal. Herein, we used nanofibrous carbon microspheres (NCM) derived from the carbohydrate chitin present in seafood waste, and characterized by interconnected nanofibrous networks and N/O-containing groups, as carriers for the manufacture of a highly dispersed, efficient and stable Pd nano-catalyst (mean diameter ca. 2.52 nm). Importantly, the carbonised chitin’s graphitized structure, defect presence and large surface area could promote the transport of electrons between NCM and Pd, thereby endowing NCM supported Pd catalyst with high catalytic activity. The NCM supported Pd catalyst was employed in the degradation of some representative dyes and the chemoselective hydrogenation of aromatic aldehydes;this species exhibited excellent catalytic activity and stability, as well as applicability to a broad range of aromatic aldehydes, suggesting its potential use in green industrial catalysis.
基金the financial support of the National Natural Science Foundation of China(Nos.22102102,21805191 and 21972094)China Postdoctoral Science Foundation(No.2021T140472)+4 种基金Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010982)Educational Commission of Guangdong Province(No.839-0000013131)Shenzhen Stable Support Project(Nos.20200812160737002 and 20200812122947002)Shenzhen Peacock Plan(Nos.KQTD2016053112042971,20210308299C,20180921273B,20210802524B,and 827-000421)Shenzhen Science and Technology Program(Nos.JCYJ20190808142001745 and RCJC20200714114434086)。
文摘Nature has provided us the assurance and inspiration for thousands of years in synthesizing value-added chemicals,with the assistance of reactive hydrogen species,and water as the ultimate hydrogen source.However,the natural photosynthesis is inefficient due to some intrinsic properties,urging people not only to learn from but also surpass during nature imitation.In this review,we summarized recent progresses on reactive hydrogen species-assisted nanocatalytic reduction of organic molecules towards value-added fine chemicals and pharmaceuticals,with water as the hydrogen source,and especially highlighted how photocatalytically or electrocatalytically evolved reactive hydrogen species synergize with biocatalytic centers and nanocatalytic sites for reduction of organic molecules.The design principles of collaborative semi-artificial systems and nanocatalytic artificial systems,the structure tuning of catalysts for the evolution and utilization of hydrogen species,and the determination of reactive hydrogen species for mechanistic insights were discussed in detail.Finally,perspectives were provided for further advancing this emerging area of nanocatalytic reduction of organic molecules from water(or proton)and organics.
基金the financial support provided by National Natural Science Foundation of China (Nos.20821004 and 50642042)the Key Research Program of Ministry ofEducation of China (No. 108009)+1 种基金CNPC Innovation Foundation (No.06-04D-01-01-02)the Chinese Universities Scientific Fund
文摘Pd-based egg-shell nano-catalysts were prepared using porous hollow silica nanoparticles (PHSNs) as support, and the as-prepared catalysts were modified with TiO2 to promote their selectivity for hydro-genation of acetylene. Pd nanoparticles were loaded evenly on PHSNs and TiO2 was loaded on the active Pd particles. The effects of reduction time and temperature and the amount of TiO2 added on catalytic per-formances were investigated by using a fixed-bed micro-reactor. It was found that the catalysts showed better performance when reduced at 300 ℃ than at 500℃, and if reduced for 1 h than 3 h. When the amount of Ti added was 6 times that of Pd, the catalyst showed the highest ethylene selectivity.
基金financially supported by the Shanghai Natural Science Foundation (No. 13ZR1400300)National Key R&D Program of China (No. 2017YFB030900)
文摘Novel magnetic core/shell bimetallic Au/Cu nanoparticles(Fe_3O_4@SiO_2-Au/Cu NPs) were prepared using SiO_2-coated iron oxide(Fe_3O_4@SiO_2) as a supported material. The magnetic Fe_3O_4 colloidal nanocrystal clusters(CNCs) as nano-core were modified with a silica coating for improvement stability and superficial area of the Au-Cu particles. The morphological structure and chemical composition of the Fe_3O_4@SiO_2-Au/Cu NPs were characterized with high-resolution transmission electron microscopy(HRTEM), energy-dispersive X-ray(EDX) and X-ray photoelectron spectroscopy(XPS) analyses. The Au and Cu NPs were deposited on the SiO_2 surface in a highly dense and well dispersed manner with an average size of approximately 5 nm. The Fe_3O_4@SiO_2-Au/Cu NPs as magnetic nano-catalysts were applied to the Ullmann coupling reaction of bromamine acid to synthesize 4,40-diamino-1,10-dianthraquinonyl-3,30-disulfonic acid(DAS). The prepared Fe_3O_4@SiO_2-Au/Cu NPs exhibited efficient catalytic activity with higher conversion and selectivity. A bromamine acid conversion of 97.35% and selectivity for DAS of 88.67% were obtained in aqueous medium. The magnetic nano-catalysts can be readily separated from the reaction system and reused. This new nano-catalytic reaction represents a useful and attractive cleaner production system. The new catalyst system has important and potential applications in dye and pigment industry.
文摘Magnetically separable CuO nanoparticles supported on graphene oxide(Fe3O4 NPs/GO-CuO NPs) is synthesized and characterized for the preparation of propargylamines in EtOH,at 90 C.Fe3O4 NPs/GOCuO NPs is found to be an efficient catalyst for the A^3-coupling of aldehydes,amines,and alkynes through C-H activation.Both aromatic and aliphatic aldehydes and alkynes are combined with secondary amines to provide a wide range of propargylamines in moderate to excellent yields.