This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & sil...This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.展开更多
The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electr...The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.展开更多
The effects of sodium carboxymethyl cellulose and sodium citrate as dispersants on nano-ceramic aqueous suspension were examined by the measurements of ζ -potential and the sedimentation test. The results show that p...The effects of sodium carboxymethyl cellulose and sodium citrate as dispersants on nano-ceramic aqueous suspension were examined by the measurements of ζ -potential and the sedimentation test. The results show that proper addition of sodium carboxymethyl cellulose or sodium citrate into nano-ceramic coating, exhibits an enhanced dispersion and stability compared with the coating without dispersants. The negative ζ -potential of the particles in the nano-coating increases with the increase of pH value of the coating, and the curve of ζ -pH moves to lower pH range when the dispersants are added into the coating. To ensure that the coating has not only good stability and dispersibility but also no corrosivity to substrate alloy, adding 1.00% sodium citrate into coating with pH value of 7-8 is preferable to adding sodium carboxymethyl cellulose.展开更多
Al_(0.4)CoCrFe_(2)Ni_(2)high-entropy alloys with different additions of TiO_(2) nanoceramic particles(0,1.25vol.%,2.5vol.%,3.75vol.%and 5vol.%,respectively)were prepared by using the vacuum arc melting method.The effe...Al_(0.4)CoCrFe_(2)Ni_(2)high-entropy alloys with different additions of TiO_(2) nanoceramic particles(0,1.25vol.%,2.5vol.%,3.75vol.%and 5vol.%,respectively)were prepared by using the vacuum arc melting method.The effects of TiO_(2) addition on the crystal structure,microstructures and mechanical properties of the alloy were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile testing.The microstructure analysis shows that the TiO_(2)nano-ceramic particles added in the alloy are decomposed,and a small amount of Al_(2)O_(3)and a great number of intermetallic compounds(γ'phases)with simple cube structure are formed.Theγ'phases are enriched at inter-dendrite,which increases the resistance of dislocation movement during the deformation of the alloy,thus balancing the problem of high plasticity and low strength of the alloy.When the addition of TiO_(2)is 2.5vol.%,the strength of the high-entropy alloy reaches the maximum of 489 MPa,which is 11.1%higher than the matrix alloy composed of single FCC phase.展开更多
A novel approach to reduce Ni content for the 310S austenitic stainless steel was proposed.The nano-ceramic additive(L)was applied to 310S steel to replace part of Ni element and reduce the cost.By means of thermal si...A novel approach to reduce Ni content for the 310S austenitic stainless steel was proposed.The nano-ceramic additive(L)was applied to 310S steel to replace part of Ni element and reduce the cost.By means of thermal simulation,X-ray diffraction,field emission scanning electron microscopy,and electron backscattered diffraction,the effects of nanoceramic additives on high-temperature mechanical properties and corrosion behavior of the 310S steel were studied.The results indicate that the morphology and density of the(Fe,Cr)_(23)C_(6)carbides are varied,which play an important role in the high-temperature mechanical properties and corrosion behavior.After adding nano-ceramic additives,the high-temperature tensile strength and yield strength are improved simultaneously,in spite of a slight decrease in the total elongation.During high-temperature corrosion process,the mass gain of all the samples is parabolic with time.The mass gain is increased in the 310S steel with nano-ceramic additive,while the substrate thickness is significantly larger than 310S steel.The more stable and adherent FeCr_(2)O_(4)spinel form is the reason why the high-temperature corrosion resistance was increased.The(Fe,Cr)_(23)C_(6)carbides distribution along grain boundaries is detrimental to the high-temperature corrosion resistance.展开更多
Nanocrystalline Zn1-xGdxO(x=0,0.02,0.04,0.06,and 0.08)ceramics were synthesized by ball milling and subsequent solid-state reaction.The transmission electron microscopy(TEM)micrograph of as synthesized samples reveale...Nanocrystalline Zn1-xGdxO(x=0,0.02,0.04,0.06,and 0.08)ceramics were synthesized by ball milling and subsequent solid-state reaction.The transmission electron microscopy(TEM)micrograph of as synthesized samples revealed the formation of crystallites with an average diameter of 60 nm,and the selected area electron diffraction(SAED)pattern confirmed the formation of wurtzite structure.A red shift in the band gap was observed with increasing Gd^(3+)concentration.The photoluminescence of nanocrystalline Gd^(3+)doped ZnO exhibited a strong violet-blue emission.Concentration dependence of the emission intensity of Gd^(3+)in ZnO was studied,and the critical concentration was found to be 4 mol%of Gd^(3+).The Gd^(3+)doped ZnO exhibited paramagnetic behavior at room temperature,and the magnetic moment increased with Gd^(3+)concentration.展开更多
文摘This paper concentrates on the development of glasses with self-cleaning surfaces exhibiting high water contact angles. In this study, we prepared super-hydrophobic nano-ceramic coated glass based on titania & silica using simple sol-gel & dip coating methods and studied the best composition of the coatings by altering ratios of titanium tetraisopropoxide (TTIP)/tetraethyl orthosilicate (TEOS) with different homogenizing agents. We characterized the coatings by surface roughness measurement, percentage of optical transmission, static contact angle, near-infrared (NIR) transmission, and diffuse reflectance. The fabrication of coatings on glass substrates played an important role in increasing the water contact angle of about 95° and visible & NIR transmission of about 90%. We compared our modified glass substrate with commercial low emissivity (Low E) glass using X-ray diffraction (XRD) analysis, which showed pure amorphous surface claiming excellent wettability and thus the prepared glass substrate could have a variety of applications in different fields.
文摘The major solving ways for the material wear are surface modification and lubrication. Currently, the researches at home and abroad are all limited to the single study of either nano-lubricating oil additive or electroless deposited coating. The surface coating has high hardness and high wear resistance, however, the friction reduction performance of the coating with high hardness is not good, the thickness of the coating is limited, and the coating can not regenerate after wearing. The nano-lubricating additives have good tribological performance and self-repair function, but under heavy load, the self-repair rate to the worn surface with the nano-additives is smaller than the wearing rate of the friction pair. To solve the above problems, the Ni-W-P alloy coating and deposition process with excellent anti-wear, and suitable for industrial application were developed, the optimum bath composition and process can be obtained by studying the influence of the bath composition, temperature and PH value to the deposition rate and the plating solution stability. The tribological properties as well as anti-wear and friction reduction mechanism of wear self-repair nano-ceramic lubricating additives are also studied. The ring-block abrasion testing machine and energy dispersive spectrometer are used to explore the internal relation between the coating and the nano-lubricating oil additives, and the tribology mechanism, to seek the synergetic effect between the two. The test results show that the wear resistance of Ni-W-P alloy coating (with heat treatment and in oil with nano-ceramic additives) has increased hundreds times than 45 steel as the metal substrate in basic oil, the friction reduction performance is improved. This research breaks through the bottleneck of previous separate research of the above-mentioned two methods, and explores the combination use of the two methods in industrial field.
文摘The effects of sodium carboxymethyl cellulose and sodium citrate as dispersants on nano-ceramic aqueous suspension were examined by the measurements of ζ -potential and the sedimentation test. The results show that proper addition of sodium carboxymethyl cellulose or sodium citrate into nano-ceramic coating, exhibits an enhanced dispersion and stability compared with the coating without dispersants. The negative ζ -potential of the particles in the nano-coating increases with the increase of pH value of the coating, and the curve of ζ -pH moves to lower pH range when the dispersants are added into the coating. To ensure that the coating has not only good stability and dispersibility but also no corrosivity to substrate alloy, adding 1.00% sodium citrate into coating with pH value of 7-8 is preferable to adding sodium carboxymethyl cellulose.
基金supported by the Open Project of State Key Laboratory of Light Alloy Casting Technology for High-end Equipment(LACT-009)the Program for Natural Science Foundation of Liaoning Province(2022-BS-181).
文摘Al_(0.4)CoCrFe_(2)Ni_(2)high-entropy alloys with different additions of TiO_(2) nanoceramic particles(0,1.25vol.%,2.5vol.%,3.75vol.%and 5vol.%,respectively)were prepared by using the vacuum arc melting method.The effects of TiO_(2) addition on the crystal structure,microstructures and mechanical properties of the alloy were investigated by X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),and tensile testing.The microstructure analysis shows that the TiO_(2)nano-ceramic particles added in the alloy are decomposed,and a small amount of Al_(2)O_(3)and a great number of intermetallic compounds(γ'phases)with simple cube structure are formed.Theγ'phases are enriched at inter-dendrite,which increases the resistance of dislocation movement during the deformation of the alloy,thus balancing the problem of high plasticity and low strength of the alloy.When the addition of TiO_(2)is 2.5vol.%,the strength of the high-entropy alloy reaches the maximum of 489 MPa,which is 11.1%higher than the matrix alloy composed of single FCC phase.
基金This work was financially supported by the Key Technology Research and Development Program of Shandong(2019TSLH0103)the Fundamental Research Funds for the Central Universities(FRF-TP-19-009A1).
文摘A novel approach to reduce Ni content for the 310S austenitic stainless steel was proposed.The nano-ceramic additive(L)was applied to 310S steel to replace part of Ni element and reduce the cost.By means of thermal simulation,X-ray diffraction,field emission scanning electron microscopy,and electron backscattered diffraction,the effects of nanoceramic additives on high-temperature mechanical properties and corrosion behavior of the 310S steel were studied.The results indicate that the morphology and density of the(Fe,Cr)_(23)C_(6)carbides are varied,which play an important role in the high-temperature mechanical properties and corrosion behavior.After adding nano-ceramic additives,the high-temperature tensile strength and yield strength are improved simultaneously,in spite of a slight decrease in the total elongation.During high-temperature corrosion process,the mass gain of all the samples is parabolic with time.The mass gain is increased in the 310S steel with nano-ceramic additive,while the substrate thickness is significantly larger than 310S steel.The more stable and adherent FeCr_(2)O_(4)spinel form is the reason why the high-temperature corrosion resistance was increased.The(Fe,Cr)_(23)C_(6)carbides distribution along grain boundaries is detrimental to the high-temperature corrosion resistance.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,Science and Technology(Grant Nos.2010-0011939,2011-0005007,and 2012-0002518).
文摘Nanocrystalline Zn1-xGdxO(x=0,0.02,0.04,0.06,and 0.08)ceramics were synthesized by ball milling and subsequent solid-state reaction.The transmission electron microscopy(TEM)micrograph of as synthesized samples revealed the formation of crystallites with an average diameter of 60 nm,and the selected area electron diffraction(SAED)pattern confirmed the formation of wurtzite structure.A red shift in the band gap was observed with increasing Gd^(3+)concentration.The photoluminescence of nanocrystalline Gd^(3+)doped ZnO exhibited a strong violet-blue emission.Concentration dependence of the emission intensity of Gd^(3+)in ZnO was studied,and the critical concentration was found to be 4 mol%of Gd^(3+).The Gd^(3+)doped ZnO exhibited paramagnetic behavior at room temperature,and the magnetic moment increased with Gd^(3+)concentration.