A new kind of anti-oxidation inorganic nano-coating for the common low carbon steel was prepared. It included magnesite mineral, metallurgic dust and silicate adhesive as the main raw materials. The nano-coating could...A new kind of anti-oxidation inorganic nano-coating for the common low carbon steel was prepared. It included magnesite mineral, metallurgic dust and silicate adhesive as the main raw materials. The nano-coating could be sprayed directly onto the low carbon steel slab even though with hot surface as far as under 1000 ℃ . And at the same time, a compact thin nano-film was formed, and the film would inhibit the oxygen into the interface of the steel body and decrease the loss of weight because of oxidation. The loss was decreased by about 60% or more. The properties and mechanism of oxidation resistance of the coating were discussed through XRD, TG-DTA and SEM. The experimental results show that many reactions would happen among the companents of the coating and then many microspheres with the size of 80- 100nm generated in the system. By using the heat of the steel body, the silicate adhesive would interact with the microspheres, and the other components of the coating would be soft and sintered so that when the coating was sprayed onto the suface of the steel slab , the intact and compact film could be formed and adhesive with the steel body. Besides the special properties of anti- oxidation, the coating could prevent the volatilization of microelement in the steel such as silicate and carbon at a high temperature. So it can improve the quality and output of steel with this new kind of nano-coating.展开更多
Three-electrode plasma jet system consisting of a perforated dielectric tube with two outer and one floating inner electrodes was developed and employed for nano-coating processes of Si [1 0 0] wafer. Lowered gas brea...Three-electrode plasma jet system consisting of a perforated dielectric tube with two outer and one floating inner electrodes was developed and employed for nano-coating processes of Si [1 0 0] wafer. Lowered gas breakdown voltage, increasing plasma density and increased discharge current were achieved by using the floating inner electrode. The low temperature (Nonthermal) Atmospheric Pressure Plasma protective coating technique using precursor-containing gases (Ar, O2 and OMCTS mixture) which injected into Plasma Jet (APPJ), there are several techniques are introduced here to avoid substrate damage including increasing plasma density without increasing the kinetic energy of the ion bombardment. Furthermore some few precautions are given here to insure good media for silicon wafer prepared for coating.展开更多
A cost-effective carbon-free nanocoating strategy was developed for the synthesis of ultra-fine SnO2 coatingα-Fe2O3 core-shell nanoparticles. This strategy only involves a two-step molten salt reaction at low tempera...A cost-effective carbon-free nanocoating strategy was developed for the synthesis of ultra-fine SnO2 coatingα-Fe2O3 core-shell nanoparticles. This strategy only involves a two-step molten salt reaction at low temperature of 300 °C. The as-preparedα-Fe2O3@SnO2 core-shell nanocomposites show enhanced electrochemical performances than the bareα-Fe2O3 nanoparticles. This involved metal oxide nanocoating method is easy to be carried out, and the heat treatment temperature is much lower than that of other traditional solid-state annealing method and many carbon or metal oxide nanocoating methods. The molten salt method may also be used to produce other metal oxides coating nanostructures as the electrode materials for lithium-ion batteries.展开更多
Nanocrystal ODS (oxide dispersion strengthening) aluminide coatings were produced on a stainless steel and nickel-based superalloy by the pock aluminizing process assisted by ball peening, Pure Al powders and 1% of ...Nanocrystal ODS (oxide dispersion strengthening) aluminide coatings were produced on a stainless steel and nickel-based superalloy by the pock aluminizing process assisted by ball peening, Pure Al powders and 1% of ultra-fine Y2O3 powders were mixed by ball milling. The ultra-fine Y2O3 powders were dispersed in Al particles. Ball peening welded the Al particles onto the substrate and accelerated the formation of aluminide coating. Nanocrystal ODS aluminide coatings were produced by the outward growth at a much low temperature (below 600℃) in a short treatment time. The effects of the operation temperature and treatment time on the formation of the coatings were analyzed. SEM (scanning electron microscope), AFM (atomic force microscope), EDS (energy dispersive X-ray spectroscopy), XRF (X-ray fluorescence spectrometer) and XRD (X-ray diffraction) methods were applied to investigate the microstructure of the coatings. High-temperature oxidation tests were carried out to evaluate the oxidation resistance of the ODS aluminide coatings.展开更多
(Ti, Al)N gradient nano-coating was deposited on the surface of 1Cr11Ni2W2MoV stainless steel by the MTP-8-800 arc ion plating equipment. And the oxidation performance at high temperature for 500h was tested under t...(Ti, Al)N gradient nano-coating was deposited on the surface of 1Cr11Ni2W2MoV stainless steel by the MTP-8-800 arc ion plating equipment. And the oxidation performance at high temperature for 500h was tested under the condition of the surrounding air temperature 700℃. The test results show that, because of the structural features of the (Ti, Al)N coating, the coating becomes the compact and continuous Al2O3 film, which can protect the basis material effectively in the process of the high temperature oxidizing. The oxidation kinetics of the coating accord with parabolic law.展开更多
The main target of this research is to allow solar PV to contribute economically to an on-grid energy-efficient building where the dust accumulation is a significant factor.Self-cleaning coatings such as hydrophobic o...The main target of this research is to allow solar PV to contribute economically to an on-grid energy-efficient building where the dust accumulation is a significant factor.Self-cleaning coatings such as hydrophobic or hy-drophilic materials have recently been introduced to reduce dust deposition on building-integrated PV(BIPV)panels.The hydrophilic Nano-coated material is examined as a solution to decrease the impact of the dust on the BIPV panels and harvest more solar energy.An impartial comparison of the BIPV panels performance under natu-ral dust conditions,manual cleaning,and hydrophilic nanomaterial coating is performed.Through an exhaustive and qualitative experimental analysis,the anti-reflection and anti-static properties of the utilized Nano-coated material are examined.The experimental results show that the hydrophilic Nano-coated material significantly improves the gathered maximum output power by 18%compared to the manually wiped panel.The calculated efficiencies of the Nano-coated,manual cleaning,and dusty panels are 11%,9%,and 6%,respectively,which highlights the futureproofing of the Nano-coated solar panel.Compared to the dusty panels,the ecological and economical results show that the BIPV carbon emissions are desirably dropped by 11%while using Nano-coated PV panels and the payback period is reduced to 3.9 years,which is approximately 12.8%faster.展开更多
The nano-concentrates and flame retardant nano-coating were prepared in thhis study. The effect of nano-SiO2 on the corrosion resistance and fire resistance of ammonium polyphosphate-pentaerythritol-melamine (APP- PE...The nano-concentrates and flame retardant nano-coating were prepared in thhis study. The effect of nano-SiO2 on the corrosion resistance and fire resistance of ammonium polyphosphate-pentaerythritol-melamine (APP- PER-MEL) coating was investigated by differential thermal analysis (DTA), scanning electron microscopy (SEM), effective thermal conductivity (λ/d), X-ray photoelectron spectroscopy (XPS) and fire protection test. The chemical action and endothermic effect of ammonium polyphosphate, pentaerythritol and melamine in traditional flame retardant coating were damaged by salt spray condition, whereas the flame-retardant additives in the nano-coating demonstrated the good chemical interaction in salt spray condition. The uniformly dispersed nano-SiO2 particles could improve corrosion resistance of the coating, and hence nano-coating could remain the good fire-resistant properties even after 500 h salt spray test.展开更多
This paper presents research findings on the tribological performance of electrodeposited coatings subject to nano-lubricants with the addition of nano-Al2O3 and graphene and Ni/nano-Al2O3 composite coatings. Electrod...This paper presents research findings on the tribological performance of electrodeposited coatings subject to nano-lubricants with the addition of nano-Al2O3 and graphene and Ni/nano-Al2O3 composite coatings. Electrodeposited coatings were produced by using a pulse electrodeposition method. Tribological experiments were conducted by using a linear reciprocating ball on fiat sliding tribometer. Experimental results confirmed that the wear and friction resistance properties were significantly enhanced by doping of nano-effects in the lubricating oil and composite coating. The addition of Al2O3 nanoparticles in the lubricating oil showed the best tribological properties, followed by Ni-Al2O3 composite coatings and nano-oil with graphene. The surface morphology and microstructure of electrodeposited coatings were examined by scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction. The wear mechanisms of these coatings subjected to tribological testing were investigated by post-test surface analyses. This research provides a novel approach to design durable nano-coatings for tribological applications in various industries such as automotive, aerospace, locomotive and renewable energy technologies.展开更多
A novel method for synthesizing long afterglow silicate phosphor Sr3MgSi2O8:Eu^2+,Dy^3+using TEOS and inorganic powders as reactants was reported. Acetic acid as a catalyzer controlled the hydrolysis of TEOS by adj...A novel method for synthesizing long afterglow silicate phosphor Sr3MgSi2O8:Eu^2+,Dy^3+using TEOS and inorganic powders as reactants was reported. Acetic acid as a catalyzer controlled the hydrolysis of TEOS by adjusting pH value of the system. The morphologies of precursor were characterized by transmission electron microscope (TEM). The structure and optical properties of the phosphor powders were systematically investigated by means of X-ray diffraction and spectrofluorometry. TEM images have reflected the core-shell structure and quasi-spherical morphology of the precursor particles. It was found that the single-phase Sr3MgSi2O8 crystalline structures were obtained at 1050 and 1250 ℃ for the samples prepared with the nano-coating method and the solid state reaction, respectively. The emission intensities of the phosphors prepared by the present method were higher than those by the conventional process. Also, the afterglow characteristic was better than that prepared by solid-state reaction in the comparable condition.展开更多
Isothermal oxidation behavior of chromium with and without nanon sol-gel CeO2 coating is studied at 1 000 ℃ in air. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to examin...Isothermal oxidation behavior of chromium with and without nanon sol-gel CeO2 coating is studied at 1 000 ℃ in air. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to examine the surface morphology and microstructure of the oxide films. It is found that ceria coating greatly improves the anti-oxidation property of chromium. Laser Raman spectrometer and X-ray diffraction spectrometer (XRD) are also used to study the stress level in oxide films formed on ceria-coated and ceria-free Cr. Secondary ion mass spectrometer (SIMS) is used to examine Cr, O and Ce element distribution in depth in oxide films. Results show that nano-ceria application greatly reduces the growth speed and grain size of Cr2O3 film, and this fine grained Cr2O3 film probably has better high temperature plasticity, i. e. , oxide film relieves part of the compressive stress by means of creeping. Meanwhile, CeO2 changes the oxide film growth mechanism from predominant cation outward diffusion to anion inward diffusion. XRD and Raman testing results both show the stress declination effect due to nano-CeO2 application, and their discrepancy in the rare earth effect is analyzed.展开更多
文摘A new kind of anti-oxidation inorganic nano-coating for the common low carbon steel was prepared. It included magnesite mineral, metallurgic dust and silicate adhesive as the main raw materials. The nano-coating could be sprayed directly onto the low carbon steel slab even though with hot surface as far as under 1000 ℃ . And at the same time, a compact thin nano-film was formed, and the film would inhibit the oxygen into the interface of the steel body and decrease the loss of weight because of oxidation. The loss was decreased by about 60% or more. The properties and mechanism of oxidation resistance of the coating were discussed through XRD, TG-DTA and SEM. The experimental results show that many reactions would happen among the companents of the coating and then many microspheres with the size of 80- 100nm generated in the system. By using the heat of the steel body, the silicate adhesive would interact with the microspheres, and the other components of the coating would be soft and sintered so that when the coating was sprayed onto the suface of the steel slab , the intact and compact film could be formed and adhesive with the steel body. Besides the special properties of anti- oxidation, the coating could prevent the volatilization of microelement in the steel such as silicate and carbon at a high temperature. So it can improve the quality and output of steel with this new kind of nano-coating.
文摘Three-electrode plasma jet system consisting of a perforated dielectric tube with two outer and one floating inner electrodes was developed and employed for nano-coating processes of Si [1 0 0] wafer. Lowered gas breakdown voltage, increasing plasma density and increased discharge current were achieved by using the floating inner electrode. The low temperature (Nonthermal) Atmospheric Pressure Plasma protective coating technique using precursor-containing gases (Ar, O2 and OMCTS mixture) which injected into Plasma Jet (APPJ), there are several techniques are introduced here to avoid substrate damage including increasing plasma density without increasing the kinetic energy of the ion bombardment. Furthermore some few precautions are given here to insure good media for silicon wafer prepared for coating.
基金Projects(51202297,81372464,51472271)supported by the National Natural Science Foundation of ChinaProject(NCET-12-0554)supported by the New Century Excellent Talents in UniversityProject(2013CB932901)supported by the National Basic Research Program of China
文摘A cost-effective carbon-free nanocoating strategy was developed for the synthesis of ultra-fine SnO2 coatingα-Fe2O3 core-shell nanoparticles. This strategy only involves a two-step molten salt reaction at low temperature of 300 °C. The as-preparedα-Fe2O3@SnO2 core-shell nanocomposites show enhanced electrochemical performances than the bareα-Fe2O3 nanoparticles. This involved metal oxide nanocoating method is easy to be carried out, and the heat treatment temperature is much lower than that of other traditional solid-state annealing method and many carbon or metal oxide nanocoating methods. The molten salt method may also be used to produce other metal oxides coating nanostructures as the electrode materials for lithium-ion batteries.
基金the National Natural Science Foundation of China (No. 50271010).
文摘Nanocrystal ODS (oxide dispersion strengthening) aluminide coatings were produced on a stainless steel and nickel-based superalloy by the pock aluminizing process assisted by ball peening, Pure Al powders and 1% of ultra-fine Y2O3 powders were mixed by ball milling. The ultra-fine Y2O3 powders were dispersed in Al particles. Ball peening welded the Al particles onto the substrate and accelerated the formation of aluminide coating. Nanocrystal ODS aluminide coatings were produced by the outward growth at a much low temperature (below 600℃) in a short treatment time. The effects of the operation temperature and treatment time on the formation of the coatings were analyzed. SEM (scanning electron microscope), AFM (atomic force microscope), EDS (energy dispersive X-ray spectroscopy), XRF (X-ray fluorescence spectrometer) and XRD (X-ray diffraction) methods were applied to investigate the microstructure of the coatings. High-temperature oxidation tests were carried out to evaluate the oxidation resistance of the ODS aluminide coatings.
文摘(Ti, Al)N gradient nano-coating was deposited on the surface of 1Cr11Ni2W2MoV stainless steel by the MTP-8-800 arc ion plating equipment. And the oxidation performance at high temperature for 500h was tested under the condition of the surrounding air temperature 700℃. The test results show that, because of the structural features of the (Ti, Al)N coating, the coating becomes the compact and continuous Al2O3 film, which can protect the basis material effectively in the process of the high temperature oxidizing. The oxidation kinetics of the coating accord with parabolic law.
文摘The main target of this research is to allow solar PV to contribute economically to an on-grid energy-efficient building where the dust accumulation is a significant factor.Self-cleaning coatings such as hydrophobic or hy-drophilic materials have recently been introduced to reduce dust deposition on building-integrated PV(BIPV)panels.The hydrophilic Nano-coated material is examined as a solution to decrease the impact of the dust on the BIPV panels and harvest more solar energy.An impartial comparison of the BIPV panels performance under natu-ral dust conditions,manual cleaning,and hydrophilic nanomaterial coating is performed.Through an exhaustive and qualitative experimental analysis,the anti-reflection and anti-static properties of the utilized Nano-coated material are examined.The experimental results show that the hydrophilic Nano-coated material significantly improves the gathered maximum output power by 18%compared to the manually wiped panel.The calculated efficiencies of the Nano-coated,manual cleaning,and dusty panels are 11%,9%,and 6%,respectively,which highlights the futureproofing of the Nano-coated solar panel.Compared to the dusty panels,the ecological and economical results show that the BIPV carbon emissions are desirably dropped by 11%while using Nano-coated PV panels and the payback period is reduced to 3.9 years,which is approximately 12.8%faster.
文摘The nano-concentrates and flame retardant nano-coating were prepared in thhis study. The effect of nano-SiO2 on the corrosion resistance and fire resistance of ammonium polyphosphate-pentaerythritol-melamine (APP- PER-MEL) coating was investigated by differential thermal analysis (DTA), scanning electron microscopy (SEM), effective thermal conductivity (λ/d), X-ray photoelectron spectroscopy (XPS) and fire protection test. The chemical action and endothermic effect of ammonium polyphosphate, pentaerythritol and melamine in traditional flame retardant coating were damaged by salt spray condition, whereas the flame-retardant additives in the nano-coating demonstrated the good chemical interaction in salt spray condition. The uniformly dispersed nano-SiO2 particles could improve corrosion resistance of the coating, and hence nano-coating could remain the good fire-resistant properties even after 500 h salt spray test.
文摘This paper presents research findings on the tribological performance of electrodeposited coatings subject to nano-lubricants with the addition of nano-Al2O3 and graphene and Ni/nano-Al2O3 composite coatings. Electrodeposited coatings were produced by using a pulse electrodeposition method. Tribological experiments were conducted by using a linear reciprocating ball on fiat sliding tribometer. Experimental results confirmed that the wear and friction resistance properties were significantly enhanced by doping of nano-effects in the lubricating oil and composite coating. The addition of Al2O3 nanoparticles in the lubricating oil showed the best tribological properties, followed by Ni-Al2O3 composite coatings and nano-oil with graphene. The surface morphology and microstructure of electrodeposited coatings were examined by scanning electron microscopy, energy-dispersive spectroscopy and X-ray diffraction. The wear mechanisms of these coatings subjected to tribological testing were investigated by post-test surface analyses. This research provides a novel approach to design durable nano-coatings for tribological applications in various industries such as automotive, aerospace, locomotive and renewable energy technologies.
基金Project supported by the National Natural Science Foundation (No. 20376009) and the Liaoning Natural Science Foundation (No. 20032129) of China.
文摘A novel method for synthesizing long afterglow silicate phosphor Sr3MgSi2O8:Eu^2+,Dy^3+using TEOS and inorganic powders as reactants was reported. Acetic acid as a catalyzer controlled the hydrolysis of TEOS by adjusting pH value of the system. The morphologies of precursor were characterized by transmission electron microscope (TEM). The structure and optical properties of the phosphor powders were systematically investigated by means of X-ray diffraction and spectrofluorometry. TEM images have reflected the core-shell structure and quasi-spherical morphology of the precursor particles. It was found that the single-phase Sr3MgSi2O8 crystalline structures were obtained at 1050 and 1250 ℃ for the samples prepared with the nano-coating method and the solid state reaction, respectively. The emission intensities of the phosphors prepared by the present method were higher than those by the conventional process. Also, the afterglow characteristic was better than that prepared by solid-state reaction in the comparable condition.
基金Item Sponsored by National Natural Science Foundation of China(59231011)
文摘Isothermal oxidation behavior of chromium with and without nanon sol-gel CeO2 coating is studied at 1 000 ℃ in air. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to examine the surface morphology and microstructure of the oxide films. It is found that ceria coating greatly improves the anti-oxidation property of chromium. Laser Raman spectrometer and X-ray diffraction spectrometer (XRD) are also used to study the stress level in oxide films formed on ceria-coated and ceria-free Cr. Secondary ion mass spectrometer (SIMS) is used to examine Cr, O and Ce element distribution in depth in oxide films. Results show that nano-ceria application greatly reduces the growth speed and grain size of Cr2O3 film, and this fine grained Cr2O3 film probably has better high temperature plasticity, i. e. , oxide film relieves part of the compressive stress by means of creeping. Meanwhile, CeO2 changes the oxide film growth mechanism from predominant cation outward diffusion to anion inward diffusion. XRD and Raman testing results both show the stress declination effect due to nano-CeO2 application, and their discrepancy in the rare earth effect is analyzed.