期刊文献+
共找到79,192篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of rare earth on microstructures and properties of Ni-W-P-CeO_2-SiO_2 nano-composite coatings 被引量:11
1
作者 徐瑞东 王军丽 +1 位作者 郭忠诚 王华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第4期579-583,共5页
Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on common carbon steel surface by pulse electrodeposition of nickel, tungsten, phosphorus, rare earth (nano-CeO2) and silicon carbide (nano-SiO2) particles. T... Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on common carbon steel surface by pulse electrodeposition of nickel, tungsten, phosphorus, rare earth (nano-CeO2) and silicon carbide (nano-SiO2) particles. The effects of nano-CeO2 concentrations in electrolyte on microstructures and properties of nano-composite coatings were studied. The samples were characterized with chemical compositions, elements distributions, microhardness and microstructures. The results indicated that when nano-CeO2 concentration was controlled at 10 g/L, the nano-composite coatings possessed higher microhardness and compact microstmctures with clear outline of spherical matrix metal crystallites, fine crystallite sizes and uniform distribution of elements W, P, Ce and Si within the Ni-W-P matrix metal. Increasing the nano-CeO2 particles concentrations from 4 to 10 g/L led to refinement in grain structure and improvement of microstructures, while when increased to 14 g/L, the crystallite sizes began to increase again and there were a lot of small boss with nodulation shape appearing on the nano-composite coatings surface. 展开更多
关键词 pulse electrodeposition nano-composite coatings deposition rate MICROHARDNESS MICROSTRUCTURES rare earths
下载PDF
Wear and corrosion resistance and electroplating characteristics of electrodeposited Cr-SiC nano-composite coatings 被引量:10
2
作者 M.Arab JUNEGHANI M.FARZAM H.ZOHDIRAD 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期1993-2001,共9页
Cr-SiC nanocomposite coatings with various contents of SiC nanoparticles were prepared by electrodeposition in optimized Cr plating bath containing different concentrations of SiC nanoparticles. Direct current electro... Cr-SiC nanocomposite coatings with various contents of SiC nanoparticles were prepared by electrodeposition in optimized Cr plating bath containing different concentrations of SiC nanoparticles. Direct current electrocodeposition technique was used to deposit chromium layers with and without SiC nanoparticles on mild carbon steel. The effects of current density, stirring rate and concentration of nanoparticles in the plating bath were investigated. Scanning electron microscopy was used to study surface morphology. Energy dispersive analysis technique was used to verify the presence of SiC nanoparticles in the coated layers. The corrosion behaviors of coatings were investigated by potentiodynamic polarization and electrochemical impedance spectroscopy methods in 0.05 mol/L HCl, 1 mol/L NaOH and 3.5% NaCl (mass fraction), respectively. Microhardness measurements and pin-on- disc tribometer technique were used to investigate the wear behavior of the coatings. 展开更多
关键词 Cr-SiC nano-composite coatings electrocodeposition corrosion resistance wear behavior
下载PDF
Influence of SiO_2 Particles on Microstructures and Properties of Ni-W-P-CeO_2-SiO_2 Nano-Composite Coatings
3
作者 徐瑞东 王军丽 +1 位作者 郭忠诚 王华 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S2期81-86,共6页
Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on the carbon steel surface by pulse co-deposition of nickel, tungsten, phosphorus, nano-CeO2 and nano-SiO2 particles. The influence of nano-SiO2 particles concen... Ni-W-P-CeO2-SiO2 nano-composite coatings were prepared on the carbon steel surface by pulse co-deposition of nickel, tungsten, phosphorus, nano-CeO2 and nano-SiO2 particles. The influence of nano-SiO2 particles concentrations in electrolyte on microstructures and properties of the nano-composite coatings were researched, and the characteristics were assessed by chemical compositions, element distribution, deposition rate, microhardness and microstructures. The results indicate that when nano-SiO2 particles concentrations in electrolyte are controlled at 20 g·L-1, the deposition rate with 27.07 μm·h-1 and the microhardness with 666 Hv of the nano-composite coatings are highest, element line scanning and area scanning analyses show that the average contents of elements W, P, Si and Ce in the nano-composite coatings are close, displaying that the distribution of every element within the nano-composite coatings is even. An increase in nano-SiO2 particles concentrations in electrolyte (when lower than 20 g·L-1) leads to refinement in grain structure of nano-composite coatings, but when it improved to 30 g·L-1, the crystallite sizes increase again and in the meantime there are a lot of small boss with nodulation shape appearing on the surface of nano-composite coatings. 展开更多
关键词 pulse electrodepositon nano-composite coatings deposition rate MICROHARDNESS microstructure rare earths
下载PDF
Microstructure and wear characterization of AA2124/4wt.%B4C nano-composite coating on Ti-6Al-4V alloy using friction surfacing 被引量:8
4
作者 I. ESTHER I. DINAHARAN N. MURUGAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第6期1263-1274,共12页
This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method an... This work is focused on developing AA2124/4 wt.%B4 C nano-composite coatings on Ti-6 A1-4 V using friction surfacing to improve the wear resistance. The composite was produced using conventional stir casting method and coatings were laid using an indigenously-developed friction surfacing machine. The rotational speed of the mechtrode was varied. The microstructure of the composite coating was observed using conventional and advanced microscopic techniques. The sliding wear behavior was evaluated using a pin-on-disc apparatus. The coating geometry(thickness and width) increased with increased rotational speed. The interface was straight without thick intermetallic layer. Homogenous distribution of nano B4C particles and extremely fine grains was observed in the composite coating. The interfacial bonding between the aluminum matrix and B4C particles was excellent. The composite coating improved the wear resistance of the titanium alloy substrate due to the reduction in effective contact area,lower coefficient of friction and excellent interfacial bonding. 展开更多
关键词 aluminum matrix composite titanium friction surfacing coating WEAR
下载PDF
Structure, indentation and corrosion characterizations of high-silicon Ni-Si nano-composite coatings prepared by modified electrodeposition process 被引量:3
5
作者 Morteza ALIZADEH Alireza TEYMURI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期608-616,共9页
Ni-Si nano-composite coatings with various silicon contents were prepared by a modified electrodeposition process using electrolytes containing ball-milled Si/Ni particles. The effects of the concentration of the ball... Ni-Si nano-composite coatings with various silicon contents were prepared by a modified electrodeposition process using electrolytes containing ball-milled Si/Ni particles. The effects of the concentration of the ball-milled Si/Ni particles in the electrolyte on the silicon content, structure, microhardness and corrosion behaviors of the coatings were investigated. Scanning electron microscopy and X-ray diffractometry were used for structural characterization. Also, the microhardness and corrosion behaviors of the deposited coatings were evaluated. According to the results, the Si level reaches about 10 wt.% in the coating, which is a significant content of Si incorporation for electrodeposition. It was also found that the crystallite size of the coatings was progressively decreased and the hardness was increased, by increasing the content of Si. Typically, the crystallite size and microhardness of the Ni-10 wt.%Si coating were 0.39 and 2.1 times those of the pure Ni coating, respectively. Also, the results showed that there is an optimal content of Si to meet the best acidic corrosion resistance of the coatings. 展开更多
关键词 Ni-Si composite coating electrodeposition STRUCTURE corrosion behavior microhardness
下载PDF
Effect of Attapulgite Added in Plating Bath on the Properties of Ni/TiC Nano-composite Coatings 被引量:1
6
作者 王红星 MAO Xiangyang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第2期250-255,共6页
Pure copper plates were coated by Ni-TiC dipulse current plating method. The effects of adding different concentration(ranging from 0.5 g/L to 3.0 g/L) of attapulgite nano particles to the plating bath on the surfac... Pure copper plates were coated by Ni-TiC dipulse current plating method. The effects of adding different concentration(ranging from 0.5 g/L to 3.0 g/L) of attapulgite nano particles to the plating bath on the surface morphology, wear resistance, and oxidation resistance of Ni/TiC/Attapulgite nano-composite coatings were investigated. The experimental results show that the composite coating is flat and compact with adding 3.0 g/L in the bath, and the coating preferred orientation is changed from the planes(111) to(200). The coefficient of the composite coatings decreases from 0.68 to 0.18 with increasing content of attapulgite in the bath, a mixed mode of adhesive-abrasive wear occurs for all coatings, and the wear mechanism shows a transition from adhesive-abrasive to predominantly abrasive wear mechanism when the concentration of attapulgite is beyond 1.5 g/L in electrolyte. The oxidation resistance of composite coatings is the best prepared when adding attapulgite particles at 0.5 g/L in the bath, the oxide mainly consists of a NiO phase by X-ray analysis. 展开更多
关键词 Ni-TiC composite coating dipulse electrodeposition attapulgite wear resistance oxidation resistance
下载PDF
Fabrication and Characterization of Ni-Al_2O_3 Nano-Composite Coatings by Sediment Co-Deposition 被引量:2
7
作者 Feng Qiuyuan Zhang Jian +6 位作者 Li Tingju Qi Kai Zhang Xiaoli Teng Haitao Zhang Yu Liu Changsheng Jin Junze 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2009年第A03期68-72,共5页
Ni-Al2O3 nano-composite coatings were fabricated by sediment co-deposition (SCD) from Watt’s type electrolyte containing nano-Al2O3 particles without any additives. For comparison, Ni-Al2O3 nano-composite coatings we... Ni-Al2O3 nano-composite coatings were fabricated by sediment co-deposition (SCD) from Watt’s type electrolyte containing nano-Al2O3 particles without any additives. For comparison, Ni-Al2O3 nano-composite coatings were prepared by conventional electro-plating (CEP) under experimental conditions. Effects of process parameters, such as nano-Al2O3 concentration in plating solution, current density, stirring rate, and bath temperature, on nano-Al2O3 content in composite coatings were investigated. The distribution of elements in deposit, and the bonding strength between coating and substrate was analyzed by electron probe microanalyzer (EPMA) and auto-scratch apparatus, respectively. It is found that the nano-Al2O3 concentration in plating solution, current density and stirring rate are three main factors affecting the particles content in deposit, and played a key role in the formation of composite coatings. The nano-Al2O3 content in composite coatings increased with increasing of nano-Al2O3 concentration in plating solution, current density and stirring rate to reach a maximum value, and then reduced slightly. The contents of nano-Al2O3 particles in composite coatings by the SCD technique were higher than that by the CEP technique. The co-deposited nano-Al2O3 particles embedded uniformly in the Ni matrix. The coating was well adhesion with substrate. It is demonstrated that the SCD technique is an efficient approach for improving the nano-Al2O3 content in Ni-Al2O3 composite coatings. 展开更多
关键词 共沉积 电解质 电镀 纳米氧化铝
下载PDF
Synthesis and properties of electrodeposited Ni-CeO_2 nano-composite coatings 被引量:4
8
作者 Hui Jin Yi-Yong Wang +1 位作者 Yu-Ting Wang Hong-Bing Yang 《Rare Metals》 SCIE EI CAS CSCD 2018年第2期148-153,共6页
Current machinery requires metallic materials to have better surface properties. Based on an orthogonal experimental design and analysis method, the CeO2-rein- forced nickel nano-composite coatings were prepared by di... Current machinery requires metallic materials to have better surface properties. Based on an orthogonal experimental design and analysis method, the CeO2-rein- forced nickel nano-composite coatings were prepared by direct current electrodeposition in a nickel sulfate bath containing CeO2 nanoparticles. Statistical results indicate that current density is the most significant variable in the electrodeposition processing, while temperature is the least important factor. The microstructure of Ni and Ni-CeO2 nano-composite coatings was characterized by scanning electron microscopy (SEM) equipped with energy-disper- sive spectroscopy (EDS), and X-ray diffraction (XRD). The microhardness of the Ni coating is enhanced by the incorporation of CeO2 nanoparticles. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to characterize the corrosion behavior of Ni and Ni-CeO2 coatings. These studies show that Ni- CeOz coating has better corrosion resistance compared to Ni coating. 展开更多
关键词 ELECTRODEPOSITION nano-composite coatings Ce02 nanoparticles Corrosion resistance
原文传递
Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique
9
作者 Xiaoxue Wang Lulu Jin +8 位作者 Jinke Wang Rongqiao Wang Xiuchun Liu Kai Gao Jingli Sun Yong Yuan Lingwei Ma Hongchang Qian Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期119-126,共8页
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ... The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating. 展开更多
关键词 atmospheric corrosion monitoring technology corrosion inhibitor coating carbon steel corrosion protection
下载PDF
Preparation and properties of nano-composite ceramic coating by thermo chemical reaction method
10
作者 马壮 孙方红 李智超 《Journal of Coal Science & Engineering(China)》 2007年第2期211-214,共4页
Nano-composite ceramic coating was fabricated on Q235 steel through thermo chemical reaction method. Structure of the coating was analyzed and the properties were tested. The results show that a few of new ceramic pha... Nano-composite ceramic coating was fabricated on Q235 steel through thermo chemical reaction method. Structure of the coating was analyzed and the properties were tested. The results show that a few of new ceramic phases, such as MgAI2O4, ZnAI2O4, AI2SiO5, Ni3Fe and Fe3AI, are formed on the coating during the process of solidifying at 600 ℃. The ceramic coating is dense and the high bonding strength is obtained. The average bonding strength between the coating and matrix could be 14.22 MPa. The acid resistance of the coating increase by 8.8 times, the alkali resistance by 4.1 times, the salt resistance bv 10.3 times, and the wear resistance bv 2.39 times. 展开更多
关键词 thermo chemical reaction nano-composite ceramic coating bonding strength corrosion resistance abrasion resistance
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:2
11
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Significantly Improved High-Temperature Energy Storage Performance of BOPP Films by Coating Nanoscale Inorganic Layer 被引量:3
12
作者 Tiandong Zhang Hainan Yu +5 位作者 Young Hoon Jung Changhai Zhang Yu Feng Qingguo Chen Keon Jae Lee Qingguo Chi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期30-38,共9页
Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high tempe... Biaxially oriented polypropylene(BOPP)is one of the most commonly used commercial capacitor films,but its upper operating temperature is below 105℃due to the sharply increased electrical conduction loss at high temperature.In this study,growing an inorganic nanoscale coating layer onto the BOPP film's surface is proposed to suppress electrical conduction loss at high temperature,as well as increase its upper operating temperature.Four kinds of inorganic coating layers that have different energy band structure and dielectric property are grown onto the both surface of BOPP films,respectively.The effect of inorganic coating layer on the high-temperature energy storage performance has been systematically investigated.The favorable coating layer materials and appropriate thickness enable the BOPP films to have a significant improvement in high-temperature energy storage performance.Specifically,when the aluminum nitride(AIN)acts as a coating layer,the AIN-BOPP-AIN sandwich-structured films possess a discharged energy density of 1.5 J cm^(-3)with an efficiency of 90%at 125℃,accompanying an outstandingly cyclic property.Both the discharged energy density and operation temperature are significantly enhanced,indicating that this efficient and facile method provides an important reference to improve the high-temperature energy storage performance of polymer-based dielectric films. 展开更多
关键词 coating layer energy storage interfacial barrier polymer films
下载PDF
Design multifunctional Mg–Zr coatings regulating Mg alloy bioabsorption 被引量:2
13
作者 Zohra Benzarti Sandesh Itani +2 位作者 JoséDavid Castro Sandra Carvalho Ana Sofia Ramos 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1461-1478,共18页
Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequ... Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequate strength limit their applicability.To overcome this,the direct current magnetron sputtering technique is employed for surface coating in Mg-based alloys using various zirconium(Zr)content.This approach presents a promising strategy for simultaneously improving corrosion resistance,maintaining biocompatibility,and enhancing strength without compromising osseointegration.By leveraging Mg’s inherent biodegradability,it has the potential to minimize the need for secondary surgeries,thereby reducing costs and resources.This paper is a systematic study aimed at understanding the corrosion mechanisms of Mg–Zr coatings,denoted Mg-xZr(x=0–5 at.%).Zr-doped coatings exhibited columnar growth leading to denser and refined structures with increasing Zr content.XRD analysis confirmed the presence of the Mg(00.2)basal plane,shifting towards higher angles(1.15°)with 5 at.%Zr doping due to lattice parameter changes(i.e.,decrease and increase of“c”and“a”lattice parameters,respectively).Mg–Zr coatings exhibited“liquidphilic”behavior,while Young’s modulus retained a steady value around 80 GPa across all samples.However,the hardness has significantly improved across all samples’coating,reaching the highest value of(2.2±0.3)GPa for 5 at.%Zr.Electrochemical testing in simulated body fluid(SBF)at 37℃ revealed a significant enhancement in corrosion resistance for Mg–Zr coatings containing 1.0–3.4 at.%Zr.Compared with the 5 at.%Zr coating which exhibited a corrosion rate of 32 mm/year,these coatings displayed lower corrosion rates,ranging from 1 to 12 mm/year.This synergistic enhancement in mechanical properties and corrosion resistance,achieved with 2.0–3.4 at.%Zr,suggests potential ability for reducing stress shielding and controlled degradation performance,and consequently,promising functional biodegradable materials for temporary bone implants. 展开更多
关键词 Mg-Zr coatings Magnetron sputtering NANOINDENTATION Corrosion resistance Bone implants
下载PDF
Well-oriented magnesium hydroxide nanoplatelets coating with high corrosion resistance and osteogenesis on magnesium alloy 被引量:1
14
作者 Ya Shu Feng Peng +4 位作者 Zhi-Hui Xie Qiwen Yong Liang Wu Juning Xie Mei Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第8期3292-3307,共16页
Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg... Magnesium alloys are nontoxic and promising as orthopedic metallic implants,but preparing a biocompatible Mg(OH)_(2)layer with high corrosion protection ability remains challenging.It is generally believed that the Mg(OH)_(2)layer,especially that formed in a natural condition,cannot provide desirable corrosion resistance in the community of corrosion and protection.Here,several Mg(OH)_(2)coatings were prepared by changing the pH values of sodium hydroxide solutions.These coatings were composed of innumerable nanoplatelets with different orientations and showed distinguished capability in corrosion resistance.The nanoplatelets were well-oriented with their ab-planes parallel to,instead of perpendicular to,the magnesium alloy surface by raising the pH value to 14.0.This specific orientation resulted in the optimal coating showing long-term corrosion protection in both in vitro and in vivo environments and good osteogenic capability.These finds manifest that the environment-friendly Mg(OH)_(2)coating can also provide comparable and better corrosion protection than many traditional chemical conversion films(such as phosphate,and fluoride). 展开更多
关键词 Magnesium alloy Corrosion coating Magnesium hydroxide BIOMATERIALS
下载PDF
Surface Metallization of Glass Fiber(GF)/Polyetheretherketone(PEEK) Composite with Cu Coatings Deposited by Magnetron Sputtering and Electroplating 被引量:1
15
作者 钟利 金凡亚 +2 位作者 朱剑豪 TONG Honghui DAN Min 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期213-220,共8页
Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), sc... Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating. 展开更多
关键词 surface metallization Cu coating magnetron sputtering ELECTROPLATING
下载PDF
Greatly enhanced corrosion/wear resistances of epoxy coating for Mg alloy through a synergistic effect between functionalized graphene and insulated blocking layer 被引量:1
16
作者 Z.Y.Xue X.J.Li +3 位作者 J.H.Chu M.M.Li D.N.Zou L.B.Tong 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期332-344,共13页
The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification proc... The poor corrosion and wear resistances of Mg alloys seriously limit their potential applications in various industries.The conventional epoxy coating easily forms many intrinsic defects during the solidification process,which cannot provide sufficient protection.In the current study,we design a double-layer epoxy composite coating on Mg alloy with enhanced anti-corrosion/wear properties,via the spin-assisted assembly technique.The outer layer is functionalized graphene(FG)in waterborne epoxy resin(WEP)and the inner layer is Ce-based conversion(Ce)film.The FG sheets can be homogeneously dispersed within the epoxy matrix to fill the intrinsic defects and improve the barrier capability.The Ce film connects the outer layer with the substrate,showing the transition effect.The corrosion rate of Ce/WEP/FG composite coating is 2131 times lower than that of bare Mg alloy,and the wear rate is decreased by~90%.The improved corrosion resistance is attributed to the labyrinth effect(hindering the penetration of corrosive medium)and the obstruction of galvanic coupling behavior.The synergistic effect derived from the FG sheet and blocking layer exhibits great potential in realizing the improvement of multi-functional integration,which will open up a new avenue for the development of novel composite protection coatings of Mg alloys. 展开更多
关键词 Mg alloy Functionalized graphene Epoxy coating Corrosion/wear resistance Blocking layer
下载PDF
Bio-Based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention and Antibacterial Properties 被引量:1
17
作者 Jianzhong Ma Li Ma +3 位作者 Lei Zhang Wenbo Zhang Qianqian Fan Buxing Han 《Engineering》 SCIE EI CAS CSCD 2024年第5期250-263,共14页
This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to... This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to coatings layered on leather,but could also be employed as a green alternative to petroleum-based carcinogen styrene(St).Herein,MV was copolymerized with butyl acrylate(BA)to obtain waterborne bio-based P(MV-BA)miniemulsion via miniemulsion polymerization.Subsequently,MXene nanosheets with excellent photothermal conversion performance and antibacterial properties,were introduced into the P(MV-BA)miniemulsion by ultrasonic dispersion.During the gradual solidification of P(MV-BA)/MXene nanocomposite miniemulsion on the leather surface,MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene,which prompted its full exposure to light and bacteria,exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy.In particular,when the dosage of MXene nanosheets was 1.4 wt%,the surface temperature of P(MV-BA)/MXene nanocomposite miniemulsioncoated leather(PML)increased by about 15℃ in an outdoor environment during winter,and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100%under the simulated sunlight treatment for 30 min.Moreover,the introduction of MXene nanosheets increased the air permeability,water vapor permeability,and thermal stability of these coatings.This study provides a new insight into the preparation of novel,green,and waterborne bio-based nanocomposite coatings for leather,with desired warmth retention and antibacterial properties.It can not only realize zerocarbon heating based on sunlight in winter,reducing the use of fossil fuels and greenhouse gas emissions,but also improve ability to fight off invasion by harmful bacteria,viruses,and other microorganisms. 展开更多
关键词 MXene nanosheets VANILLIN Styrene substitute Leather coating Photothermal conversion Warmth retention Antibacterial properties
下载PDF
Suppressed Internal Intrinsic Stress Engineering in High-Performance Ni-Rich Cathode Via Multi layered In Situ Coating Structure 被引量:1
18
作者 Jiachao Yang Yunjiao Li +3 位作者 Xiaoming Xi Junchao Zheng Jian Yu Zhenjiang He 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期58-66,共9页
LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni... LiNi_(x)Co_(y)Al_(z)O_(2)(NCA)cathode materials are drawing widespread attention,but the huge gap between the ideal and present cyclic stability still hinders their further commercial application,especially for the Ni-rich LiNi_(x)Co_(y)Al_(z)O_(2)(x>0.8,x+y+z=1)cathode material,which is owing to the structural degradation and particles'intrinsic fracture.To tackle the problems,Li_(0.5)La_(2)Al_(0.5)O_(4)in situ coated and Mn compensating doped multilayer LiNi_(0.82)Co_(0.14)Al_(0.04)O_(2)was prepared.XRD refinement indicates that La-Mn co-modifying could realize appropriate Li/Ni disorder degree.Calculated results and in situ XRD patterns reveal that the LLAO coating layer could effectively restrain crack in secondary particles benefited from the suppressed internal strain.AFM further improves as NCA-LM2 has superior mechanical property.The SEM,TEM,XPS tests indicate that the cycled cathode with LLAO-Mn modification displays a more complete morphology and less side reaction with electrolyte.DEMS was used to further investigate cathode-electrolyte interface which was reflected by gas evolution.NCA-LM2 releases less CO_(2)than NCA-P indexing on a more stable surface.The modified material presents outstanding capacity retention of 96.2%after 100 cycles in the voltage range of 3.0-4.4 V at 1C,13%higher than that of the pristine and 80.8%at 1 C after 300 cycles.This excellent electrochemical performance could be attributed to the fact that the high chemically stable coating layer of Li_(0.5)La_(2)Al_(0.5)O_(4)(LLAO)could enhance the interface and the Mn doping layer could suppress the influence of the lattice mismatch and distortion.We believe that it can be a useful strategy for the modification of Ni-rich cathode material and other advanced functional material. 展开更多
关键词 compensating doped in situ coating multilayer material Ni-rich cathode materials suppressed internal strain
下载PDF
Corrosion behavior of HVOF Inconel 625 coating in the simulated marine environment 被引量:1
19
作者 彭超 钟丰平 +2 位作者 袁梦 谢世杰 王学斌 《China Welding》 CAS 2024年第1期46-51,共6页
High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the ... High velocity oxygen fuel(HVOF)spraying process is commonly used to produce superalloy coatings.Inconel 625 coating was prepared on Q235B low carbon steel by HVOF.A series of experiments were conducted to examine the surface and corrosion resistance properties of Inconel 625 HVOF coating.In this paper,potentiodynamic polarization tests and electrochemical impedance spectroscopy(EIS)tests were carried out to evaluate the corrosion resistance of Inconel 625 coating under simulated marine environment.The experiment-al results showed that Inconel 625 coating revealed low porosity and desired coating thickness.Shift in the corrosion potential(E_(corr))to-wards the noble direction combined with much low corrosion current density(i_(corr))indicating a significant improvement of HVOF Inconel 625 coating compared with the substrate. 展开更多
关键词 high velocity oxygen fuel(HVOF) Inconel 625 coating marine environment corrosion
下载PDF
Tuning Li/Ni mixing by reactive coating to boost the stability of cobalt-free Ni-rich cathode 被引量:1
20
作者 Fanghui Du Xitong Zhang +7 位作者 Yingchao Wang Lei Ding Pengfang Zhang Lingyang Liu Dong Wang Jianzong Man Yuling Chen Yunwu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期20-29,I0002,共11页
Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective s... Cobalt-free cathode materials are attractive for their high capacity and low cost,yet they still encounter issues with structural and surface instability.AlPO_(4),in particular,has garnered attention as an effective stabilizer for bulk and surface.However,the impact of interfacial reactions and elemental interdiffusion between AlPO_(4) and LiNi_(0.95)Mn_(0.05)O_(2) upon sintering on the bulk and surface remains elusive.In this study,we demonstrate that during the heat treatment process,AlPO_(4) decomposes,resulting in Al doping into the bulk of the cathode through elemental interdiffusion.Simultaneously,PO_(4)^(3-)reacts with the surface Li of material to form a Li_3PO_(4) coating,inducing lithium deficiency,thereby increasing Li/Ni mixing.The suitable Li/Ni mixing,previously overlooked in AlPO_(4) modification,plays a pivotal role in stabilizing the bulk and surface,exceeding the synergy of Al doping and Li_3PO_(4) coating.The presence of Ni^(2+)ions in the lithium layers contributes to the stabilization of the delithiated structure via a structural pillar effect.Moreover,suitable Li/Ni mixing can stabilize the lattice oxygen and electrode-electrolyte interface by increasing oxygen removal energy and reducing the overlap between the Ni^(3+/4+)e_g and O^(2-)2p orbitals.These findings offer new perspectives for the design of stable cobalt-free cathode materials. 展开更多
关键词 Cobalt-free Ni-rich cathode Li/Ni mixing Al doping Li_(3)PO_(4) coating Lithium-ion batteries
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部