A metalloid Ti13Cu87 target was sputtered by reactive DC magnetron sputtering at various substrate temperatures in an Ar-N2 mixture ambient. The sputtered species were condensed on Si (111), glass slide and Potsssium ...A metalloid Ti13Cu87 target was sputtered by reactive DC magnetron sputtering at various substrate temperatures in an Ar-N2 mixture ambient. The sputtered species were condensed on Si (111), glass slide and Potsssium bromide (KBr) substrates. The as-deposited films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), optical spectrophotometry and four point probe technique. The as-deposited films present composite structure of nano-crystallite cubic anti-ReO3 structure of Ti inserted Cu3N (Ti:Cu3N) and nano-crystallite face centre cubic (fcc) structure of Cu. The titanium atoms and sequential nitrogen excess form a solid solution within the Cu3N crystal structure and accommodate in crystal lattice and vacant interstitial site, respectively. Depending on substrate temperature, unreacted N atoms interdiffuse between crystallites and their (and grain) boundaries. The films have agglomerated structure with atomic Ti:Cu ratio less than that of the original targets. A theoretical model has been developed, based on sputtering yield, to predict the atomic Ti:Cu ratio for the as-deposited films. Film thickness, refractive index and extinction coefficient are extracted from the measured transmittance spectra. The films’ resistivity is strongly depending on its microstructural features and substrate temperature.展开更多
A sintered Ti13Cus7 target was sputtered by reactive direct current (DC) magnetron sputtering with a gas mixture of argon/nitrogen for different sputtering powers. Titanium-coppernitrogen thin films were deposited o...A sintered Ti13Cus7 target was sputtered by reactive direct current (DC) magnetron sputtering with a gas mixture of argon/nitrogen for different sputtering powers. Titanium-coppernitrogen thin films were deposited on Si (111), glass slide and potassium bromide (KBr) substrates. Phase analysis and structural properties of titanium-copper-nitrogen thin films were studied by X-ray diffraction (XRD). The chemical bonding was characterized by Fourier transform infrared (FTIR) spectroscopy. The results from XRD show that the observed phases are nano-crystallite cubic anti rhenium oxide (anti ReO3) structures of titanium doped Cu3N (Ti:Cu3N) and nanocrystallite face centered cubic (fcc) structures of copper. Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM/EDX) were used to determine the film morphology and atomic titanium/copper ratio, respectively. The films possess continuous and agglomerated structure with an atomic titanium/copper ratio (-0.07) below that of the original target (- 0.15). The transmittance spectra of the composite films were measured in the range of 360 nm to 1100 nm. Film thickness, refractive index and extinction coefficient were extracted from the measured transmittance using a reverse engineering method. In the visible range, the higher absorption coefficient of the films prepared at lower sputtering power indicates more nitrification in comparison to those prepared at higher sputtering power. This is consistent with the formation of larger Ti:Cu3N crystallites at lower sputtering power. The deposition rate vs. sputtering power shows an abrupt transition from metallic mode to poisoned mode. A complicated behavior of the films' resistivity upon sputtering power is shown.展开更多
A model Cu-AlN composite has been prepared by ion implantation technique and annealing. The atomic configuration and lattice relationship of a low-energy inherent interface(11)Cn//(0001)AlN were studied by using trans...A model Cu-AlN composite has been prepared by ion implantation technique and annealing. The atomic configuration and lattice relationship of a low-energy inherent interface(11)Cn//(0001)AlN were studied by using transmission electron microscopy and geometrical modelling. By analysing the dichromatic pattern of the composite,a primary structural unit of the interface atomic configuration was determined for purpose of HREM image simulations and of studying the structurul relaxation state in the near-interface region.展开更多
文摘A metalloid Ti13Cu87 target was sputtered by reactive DC magnetron sputtering at various substrate temperatures in an Ar-N2 mixture ambient. The sputtered species were condensed on Si (111), glass slide and Potsssium bromide (KBr) substrates. The as-deposited films were characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, Scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDX), optical spectrophotometry and four point probe technique. The as-deposited films present composite structure of nano-crystallite cubic anti-ReO3 structure of Ti inserted Cu3N (Ti:Cu3N) and nano-crystallite face centre cubic (fcc) structure of Cu. The titanium atoms and sequential nitrogen excess form a solid solution within the Cu3N crystal structure and accommodate in crystal lattice and vacant interstitial site, respectively. Depending on substrate temperature, unreacted N atoms interdiffuse between crystallites and their (and grain) boundaries. The films have agglomerated structure with atomic Ti:Cu ratio less than that of the original targets. A theoretical model has been developed, based on sputtering yield, to predict the atomic Ti:Cu ratio for the as-deposited films. Film thickness, refractive index and extinction coefficient are extracted from the measured transmittance spectra. The films’ resistivity is strongly depending on its microstructural features and substrate temperature.
基金the financial support of the Iranian nanotechnology initiative
文摘A sintered Ti13Cus7 target was sputtered by reactive direct current (DC) magnetron sputtering with a gas mixture of argon/nitrogen for different sputtering powers. Titanium-coppernitrogen thin films were deposited on Si (111), glass slide and potassium bromide (KBr) substrates. Phase analysis and structural properties of titanium-copper-nitrogen thin films were studied by X-ray diffraction (XRD). The chemical bonding was characterized by Fourier transform infrared (FTIR) spectroscopy. The results from XRD show that the observed phases are nano-crystallite cubic anti rhenium oxide (anti ReO3) structures of titanium doped Cu3N (Ti:Cu3N) and nanocrystallite face centered cubic (fcc) structures of copper. Scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM/EDX) were used to determine the film morphology and atomic titanium/copper ratio, respectively. The films possess continuous and agglomerated structure with an atomic titanium/copper ratio (-0.07) below that of the original target (- 0.15). The transmittance spectra of the composite films were measured in the range of 360 nm to 1100 nm. Film thickness, refractive index and extinction coefficient were extracted from the measured transmittance using a reverse engineering method. In the visible range, the higher absorption coefficient of the films prepared at lower sputtering power indicates more nitrification in comparison to those prepared at higher sputtering power. This is consistent with the formation of larger Ti:Cu3N crystallites at lower sputtering power. The deposition rate vs. sputtering power shows an abrupt transition from metallic mode to poisoned mode. A complicated behavior of the films' resistivity upon sputtering power is shown.
文摘A model Cu-AlN composite has been prepared by ion implantation technique and annealing. The atomic configuration and lattice relationship of a low-energy inherent interface(11)Cn//(0001)AlN were studied by using transmission electron microscopy and geometrical modelling. By analysing the dichromatic pattern of the composite,a primary structural unit of the interface atomic configuration was determined for purpose of HREM image simulations and of studying the structurul relaxation state in the near-interface region.