The measuring principle and experimental results of the enthalpy probe technique for thermal plasma diagnostics are presented. Its calibration and errors are discussed. Typical results are presented for the system ope...The measuring principle and experimental results of the enthalpy probe technique for thermal plasma diagnostics are presented. Its calibration and errors are discussed. Typical results are presented for the system operation in an Ar/H2(5 % H2) plasma arc jet under a reactor chamber pressure of 101.3 kPa. The plasma temperature and velocity profiles are measured. The center temperature and velocity are 6600 K and 850 m/s for plasma power 9 kW at axial location of 17 mm.展开更多
The authors presented a new measuring method of the soil thermal conductivity,the probe method,which is designed and made based on the theory of line heat source. This method is used to measure thermal conductivity of...The authors presented a new measuring method of the soil thermal conductivity,the probe method,which is designed and made based on the theory of line heat source. This method is used to measure thermal conductivity of coarse sand,fine sand and silty clay in different water contents. The results that measured by the probe method are well consistent with those of QTM-D_2. The soil thermal conductivity increases in different levels with the increase of the water content. Compared the soil thermal conductivity measured by the probe method in laboratory with in-situ experiment,it shows that the measuring gap gradually increases with the increase of the depth. The reason is that the in-situ measuring thermal conductivity can reflect the actual situation of the soil mass.展开更多
A system was developed to identify characteristics of quenchants. It consists of computerized hardware, temperature acquisition software as well as changeable probes of steels. The feature of the ability to use probes...A system was developed to identify characteristics of quenchants. It consists of computerized hardware, temperature acquisition software as well as changeable probes of steels. The feature of the ability to use probes made of any metallic material enables evaluation of hardening power of quenchants. Three thermal couples located on the same cross-section plane in the middle of probe’s length give cooling curves that present cooling behavior at different depths from the surface of probe. Microstructure and hardness of the quenched probes on the same plane in the middle of probe’s length from surface to center was investigated to estimate hardening effect. A number of quenchants were tested by this characterization system with several thermal probes of typical steels. Experimental data were stored in QuenDB quenchant database, which was designed for quenchants identification and hardness distribution storage.展开更多
We have reported a method for measuring the thermal conductivity of liguids un-der high pressure previously [1,2].Such data are necessary for improving thetechnologies such like processing as acidity,pressure cracking...We have reported a method for measuring the thermal conductivity of liguids un-der high pressure previously [1,2].Such data are necessary for improving thetechnologies such like processing as acidity,pressure cracking,thermal exploitation ofpetroleum,etc. An apparatus has thus been constructed,as shown schematically in Fig.1,tomeasure the thermal conductivity of liquids under pressure up to 25 MPa and temperatureranging from 150 to 250℃.The thermal conductivity cell is cylindrical in from,35mmin length and 25mm in inner diameter.The sample is poured into the cell through展开更多
Based on the photothermal displacement effect and the optical diffraction effect, an alternative pulsed photother mal technique has been developed. This technique overcomes some disadvantages of conventional methods a...Based on the photothermal displacement effect and the optical diffraction effect, an alternative pulsed photother mal technique has been developed. This technique overcomes some disadvantages of conventional methods and provides a sensitive, noncontact and nondestructive probe of the transient thermal and mechanical process at solid and thin film surfaces. Meanwhile, a three-dimensional theoretical model has also been presented to describe the experimental phenomena. Excellent agreement between the theory and the experiment is obtained. As an example, the technique is demonstrated by measuring the thermal diffusivity of aluminum and brass thin plates.展开更多
A major goal of research in biotechnology and nanotechnology is to develop assemblies of novel biomaterials that can be used in analytical, industrial, and therapeutic applications. The synthesis of DNA (oligodeoxyri...A major goal of research in biotechnology and nanotechnology is to develop assemblies of novel biomaterials that can be used in analytical, industrial, and therapeutic applications. The synthesis of DNA (oligodeoxyribonucleotide) has been described containing the biaryl-type nucleoside surrogates, 6-deamino-2'-deoxy-6-(l-naphthyl) adenosine (AN) and 6-deamino-2'-deoxy-6-(1-pyrenyl) adenosine (AP). It is found that incorporation of multiple ATM or AP residues in the middle of DNA duplexes does not significantly destabilize the duplexes and that the fluorescence intensities of the oligonucleotides containing AN or Ap significantly increases in the duplexes formed.展开更多
Based on the traditional measurement theory of transient plane source (TPS) technique, single-side TPS method is proposed for measuring the thermal conductivity of single specimen. The problem of transient heat conduc...Based on the traditional measurement theory of transient plane source (TPS) technique, single-side TPS method is proposed for measuring the thermal conductivity of single specimen. The problem of transient heat conduction in a semi-infinite boundary condition is studied and the theoretical formula of single-side TPS method is deduced. During the measurement, the influence of the probe heat capacity on the results is analyzed and the corresponding mathematical compensation model is established, and a series of experiments on different materials are conducted by hot disk probe at normal temperature and pressure. The results show that the relative error with the single-side TPS method is less than 5% and the relative standard deviation is no greater than 3%. This method has high accuracy and good reproducibility, which provides a feasible measuring method for single material that does not meet the requirements of the standard TPS theory.展开更多
Accurate and reliable information about the temperature of the synchronous generators excitation winding hot spot is necessary to determine the dynamic limit caused by excitation winding overheating in the PQ diagram....Accurate and reliable information about the temperature of the synchronous generators excitation winding hot spot is necessary to determine the dynamic limit caused by excitation winding overheating in the PQ diagram. For good estimation of a position and the hot spot temperature it is decided to mount 19 temperature probes on one pole of the 6-pole, 400 kVA. 50 llz synchronous generator. Due to a large number of the probes and because the probes should be glued with the metal epoxy it was assumed that mounting of the probes will disrupt the temperature field of the excitation winding. To get the answer to this question the excitation winding resistance was measured betbre and after mounting the probes, in a hot and a cold state. Temperature rise can be estimated if the resistance ratio in the hot and the cold state is known. The paper also addresses the analysis of the measurement accuracy. The result shows that, there is no significant influence on the temperature when mounting the 19 temperature probes which covered 10% of the pole excitation winding surface.展开更多
Imperfections in the(001) plate of rubidium hydrogen phthalate(RAP, RbC8H5O4) crystals have been studied by means of X-ray topography. The main defects are the grown-in dislocations, inclusions, growth layers and the ...Imperfections in the(001) plate of rubidium hydrogen phthalate(RAP, RbC8H5O4) crystals have been studied by means of X-ray topography. The main defects are the grown-in dislocations, inclusions, growth layers and the thermal strain lobes caused by heat. The large thermal strain nature was determined by an Inclusion Probed Method (IPM), which is due to the gradient of the interplanar spacing formed by atomic displacement to <110> directions.展开更多
文摘The measuring principle and experimental results of the enthalpy probe technique for thermal plasma diagnostics are presented. Its calibration and errors are discussed. Typical results are presented for the system operation in an Ar/H2(5 % H2) plasma arc jet under a reactor chamber pressure of 101.3 kPa. The plasma temperature and velocity profiles are measured. The center temperature and velocity are 6600 K and 850 m/s for plasma power 9 kW at axial location of 17 mm.
基金Supported by Project of National Natural Science Foundation of China(No.41372239)
文摘The authors presented a new measuring method of the soil thermal conductivity,the probe method,which is designed and made based on the theory of line heat source. This method is used to measure thermal conductivity of coarse sand,fine sand and silty clay in different water contents. The results that measured by the probe method are well consistent with those of QTM-D_2. The soil thermal conductivity increases in different levels with the increase of the water content. Compared the soil thermal conductivity measured by the probe method in laboratory with in-situ experiment,it shows that the measuring gap gradually increases with the increase of the depth. The reason is that the in-situ measuring thermal conductivity can reflect the actual situation of the soil mass.
文摘A system was developed to identify characteristics of quenchants. It consists of computerized hardware, temperature acquisition software as well as changeable probes of steels. The feature of the ability to use probes made of any metallic material enables evaluation of hardening power of quenchants. Three thermal couples located on the same cross-section plane in the middle of probe’s length give cooling curves that present cooling behavior at different depths from the surface of probe. Microstructure and hardness of the quenched probes on the same plane in the middle of probe’s length from surface to center was investigated to estimate hardening effect. A number of quenchants were tested by this characterization system with several thermal probes of typical steels. Experimental data were stored in QuenDB quenchant database, which was designed for quenchants identification and hardness distribution storage.
文摘We have reported a method for measuring the thermal conductivity of liguids un-der high pressure previously [1,2].Such data are necessary for improving thetechnologies such like processing as acidity,pressure cracking,thermal exploitation ofpetroleum,etc. An apparatus has thus been constructed,as shown schematically in Fig.1,tomeasure the thermal conductivity of liquids under pressure up to 25 MPa and temperatureranging from 150 to 250℃.The thermal conductivity cell is cylindrical in from,35mmin length and 25mm in inner diameter.The sample is poured into the cell through
基金Supported by the National Natural Science Foundation of China under Grant No.19774031,and the National Foundation of China for Post-Doctoral Researches.
文摘Based on the photothermal displacement effect and the optical diffraction effect, an alternative pulsed photother mal technique has been developed. This technique overcomes some disadvantages of conventional methods and provides a sensitive, noncontact and nondestructive probe of the transient thermal and mechanical process at solid and thin film surfaces. Meanwhile, a three-dimensional theoretical model has also been presented to describe the experimental phenomena. Excellent agreement between the theory and the experiment is obtained. As an example, the technique is demonstrated by measuring the thermal diffusivity of aluminum and brass thin plates.
文摘A major goal of research in biotechnology and nanotechnology is to develop assemblies of novel biomaterials that can be used in analytical, industrial, and therapeutic applications. The synthesis of DNA (oligodeoxyribonucleotide) has been described containing the biaryl-type nucleoside surrogates, 6-deamino-2'-deoxy-6-(l-naphthyl) adenosine (AN) and 6-deamino-2'-deoxy-6-(1-pyrenyl) adenosine (AP). It is found that incorporation of multiple ATM or AP residues in the middle of DNA duplexes does not significantly destabilize the duplexes and that the fluorescence intensities of the oligonucleotides containing AN or Ap significantly increases in the duplexes formed.
文摘Based on the traditional measurement theory of transient plane source (TPS) technique, single-side TPS method is proposed for measuring the thermal conductivity of single specimen. The problem of transient heat conduction in a semi-infinite boundary condition is studied and the theoretical formula of single-side TPS method is deduced. During the measurement, the influence of the probe heat capacity on the results is analyzed and the corresponding mathematical compensation model is established, and a series of experiments on different materials are conducted by hot disk probe at normal temperature and pressure. The results show that the relative error with the single-side TPS method is less than 5% and the relative standard deviation is no greater than 3%. This method has high accuracy and good reproducibility, which provides a feasible measuring method for single material that does not meet the requirements of the standard TPS theory.
文摘Accurate and reliable information about the temperature of the synchronous generators excitation winding hot spot is necessary to determine the dynamic limit caused by excitation winding overheating in the PQ diagram. For good estimation of a position and the hot spot temperature it is decided to mount 19 temperature probes on one pole of the 6-pole, 400 kVA. 50 llz synchronous generator. Due to a large number of the probes and because the probes should be glued with the metal epoxy it was assumed that mounting of the probes will disrupt the temperature field of the excitation winding. To get the answer to this question the excitation winding resistance was measured betbre and after mounting the probes, in a hot and a cold state. Temperature rise can be estimated if the resistance ratio in the hot and the cold state is known. The paper also addresses the analysis of the measurement accuracy. The result shows that, there is no significant influence on the temperature when mounting the 19 temperature probes which covered 10% of the pole excitation winding surface.
文摘Imperfections in the(001) plate of rubidium hydrogen phthalate(RAP, RbC8H5O4) crystals have been studied by means of X-ray topography. The main defects are the grown-in dislocations, inclusions, growth layers and the thermal strain lobes caused by heat. The large thermal strain nature was determined by an Inclusion Probed Method (IPM), which is due to the gradient of the interplanar spacing formed by atomic displacement to <110> directions.