期刊文献+
共找到19,506篇文章
< 1 2 250 >
每页显示 20 50 100
Self-Oscillated Growth Formation of Standing Ultrathin Nanosheets out of Uniform Ge/Si Superlattice Nanowires
1
作者 甘鑫 安钧洋 +5 位作者 王军转 刘宗光 徐骏 施毅 陈坤基 余林蔚 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第6期27-32,共6页
Self-oscillation is an intriguing and omnipresent phenomenon that governs a broad range of growth dynamics and formation of nanoscale periodic and delicate heterostructures.A self-oscillating growth phenomenon of cata... Self-oscillation is an intriguing and omnipresent phenomenon that governs a broad range of growth dynamics and formation of nanoscale periodic and delicate heterostructures.A self-oscillating growth phenomenon of catalyst droplets,consuming surface-coating a-Si/a-Ge bilayer,is exploited to accomplish a high-frequency alternating growth of ultrathin crystalline Si and Ge(c-Si/c-Ge)nano-slates,with Ge-rich layer thickness of 14–19 nm,embedded within a superlattice nanowire structure,with pre-known position and uniform channel diameter.A subsequent selective etching of the Ge-rich segments leaves a chain of ultrafine standing c-Si nanosheets down to~6 nm thick,without the use of any expensive high-resolution lithography and growth modulation control.A ternary-phase-competition model has been established to explain the underlying formation mechanism of this nanoscale self-oscillating growth dynamics.It is also suggested that these ultrathin nanosheets could help to produce ultrathin fin-channels for advanced electronics,or provide size-specified trapping sites to capture and position hetero nanoparticle for high-precision labelling or light emission. 展开更多
关键词 OSCILLATING consuming sheets
下载PDF
Shear Strengthening of Reinforced Concrete (RC) with FRP Sheets Using Different Guidelines
2
作者 Bashir H. Osman 《World Journal of Engineering and Technology》 2023年第2期281-292,共12页
The aim of this study is to investigate the influence of fiber reinforcement polymer (FRP) on shear behavior of reinforcement concrete (RC) beams with various guidelines. The FRP thickness, beam depth and concrete str... The aim of this study is to investigate the influence of fiber reinforcement polymer (FRP) on shear behavior of reinforcement concrete (RC) beams with various guidelines. The FRP thickness, beam depth and concrete strength at ultimate load are considered as main strength parameters. A finite element (FE) by using ANSYS computer program was used to analyze the reinforced concrete beams. The numerical models were used to investigate the effect of beam depth, concrete strength, CFRP sheet configuration, and CFRP sheet thickness on the behavior of reinforced concrete beams strengthened with CFRP sheets compared with different guidelines. The results from ACI guideline show little difference compared with FE, which make it suitable for RC beams strengthened with FRP sheets. 展开更多
关键词 FRP sheets Strengthening RC Beams ANSYS ACI
下载PDF
On the Vortex Sheets of Compressible Flows
3
作者 Robin Ming Chen Feimin Huang +1 位作者 Dehua Wang Difan Yuan 《Communications on Applied Mathematics and Computation》 2023年第3期967-986,共20页
This paper provides a review of the recent results on the stability of vortex sheets in compressible flows.Vortex sheets are contact discontinuities of the underlying flows.The vortex sheet problem is a free boundary ... This paper provides a review of the recent results on the stability of vortex sheets in compressible flows.Vortex sheets are contact discontinuities of the underlying flows.The vortex sheet problem is a free boundary problem with a characteristic boundary and is challenging in analysis.The formulation of the vortex sheet problem will be introduced.The linear stability and nonlinear stability for both the two-dimensional two-phase compressible flows and the two-dimensional elastic flows are summarized.The linear stability of vortex sheets for the three-dimensional elastic flows is also presented.The difficulties of the vortex sheet problems and the ideas of proofs are discussed. 展开更多
关键词 Vortex sheets Contact discontinuities Stability and instability Loss of derivatives Two-phase flows Elastic flows
下载PDF
Metal Organic Framework Nanosheets Employed as Ion Carriers for Self-Optimized Zinc Anode
4
作者 ZHU Kaiyue 《Bulletin of the Chinese Academy of Sciences》 2023年第3期174-175,共2页
Aqueous rechargeable zinc ion batteries are promising in electric grid storage due to their low cost and intrinsic safety.However,the practical implementation is hindered by the poor reversibility of the zinc anode,pr... Aqueous rechargeable zinc ion batteries are promising in electric grid storage due to their low cost and intrinsic safety.However,the practical implementation is hindered by the poor reversibility of the zinc anode,primarily caused by the chaotic Zn deposition present as dendrite and side reactions. 展开更多
关键词 ZINC primarily sheets
下载PDF
Exact solutions for magnetohydrodynamic nanofluids flow and heat transfer over a permeable axisymmetric radially stretching/shrinking sheet
5
作者 U.S.Mahabaleshwar G.P.Vanitha +2 位作者 L.M.Pérez Emad H.Aly I.Pop 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期108-114,共7页
We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the correspon... We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable. 展开更多
关键词 MAGNETOHYDRODYNAMIC NANOFLUID stretching/shrinking sheet axisymmetric flow analytical solution suction/injection
下载PDF
Numerical simulation on sand sedimentation and erosion characteristics around HDPE sheet sand barrier under different wind angles
6
作者 ZHANG Kai ZHANG Peili +3 位作者 ZHANG Hailong TIAN Jianjin WANG Zhenghui XIAO Jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第2期538-554,共17页
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t... For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area. 展开更多
关键词 Multi-wind direction HDPE sheet sand barrier Numerical simulation Windproof efficiency Sedimentation erosion
下载PDF
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study
7
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence Numerical simulation Flow field characteristics Protection benefits
下载PDF
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
8
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/CFs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/ Shrinking Sheet with a Heat Source or Sink
9
作者 Parakapali Roja Shaik Mohammed Ibrahim +1 位作者 Thummala Sankar Reddy Giulio Lorenzini 《Fluid Dynamics & Materials Processing》 EI 2024年第2期257-274,共18页
This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into accoun... This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into account.A similarity transformation is used to reduce the system of governing coupled non-linear partial differ-ential equations(PDEs),which account for the transport of mass,momentum,angular momentum,energy and species,to a set of non-linear ordinary differential equations(ODEs).The Runge-Kutta method along with shoot-ing method is used to solve them.The impact of several parameters is evaluated.It is shown that the micro-rota-tional velocity of thefluid rises with the micropolar factor.Moreover,the radiation parameter can have a remarkable influence on theflow and temperature profiles and on the angular momentum distribution. 展开更多
关键词 Chemical(first order homogeneous)reaction MAGNETOHYDRODYNAMICS MICROPOLAR NANOFLUID stretching/shrinking sheet heat source
下载PDF
A Physical Core-Loss Model for Laminated Magnetic Sheet Steels
10
作者 Kuofeng Chen 《Journal of Power and Energy Engineering》 2024年第3期115-123,共9页
A full-frequency instant core-loss equation built from the induction physical model of magnetic materials, where the iron loss, eddy loss, and hysteresis loss no longer have an integral term, and this new equation pro... A full-frequency instant core-loss equation built from the induction physical model of magnetic materials, where the iron loss, eddy loss, and hysteresis loss no longer have an integral term, and this new equation provides high simulation accuracy and performs dynamic core loss analysis on non-sinusoidal or pulse magnetic fields. The simulation examples use a high-grade electrical steel sheet 65CS400 by Epstein experimental data covering magnetic field 0.1 - 1.8 T and frequency 50 - 5000 Hz, and the average error of the simulated core loss is less than 4%. Since the simulation is converged by magnetic physical parameters, so the physical relevance of the similar laminated materials can be compared with the coefficient results. . 展开更多
关键词 Core Loss Hysteresis Loss Electrical Steel sheet
下载PDF
Innovative Techniques Unveiled in Advanced Sheet Pile Curtain Design
11
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 Patrick Oniakitan Mondoté Éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期1-37,共37页
This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equi... This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques. 展开更多
关键词 sheet Pile Curtain Design Soil-Structure Interaction Geotechnical Engineering Advanced Design Techniques Finite Element Analysis Innovative Geotechnical Methods
下载PDF
Advanced Sheet Pile Curtain Design: Case Study of Cotonou East Corniche
12
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 Patrick Oniakitan Mondoté Éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期38-64,共27页
This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient... This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures. 展开更多
关键词 sheet Pile Walls and Structural Analysis Soil-Structure Interaction Modeling Structural Sustainability Cotonou East Corniche Sustainable Construction Plaxis Calculation Code Settlement Mitigation
下载PDF
Mixed convectional and chemical reactive flow of nanofluid with slanted MHD on moving permeable stretching/shrinking sheet through nonlinear radiation,energy omission
13
作者 Saleem Nasir Sekson Sirisubtawee +1 位作者 Pongpol Juntharee Taza Gul 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期193-202,共10页
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ... Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement. 展开更多
关键词 hybrid nanofluid(SWCNT+MWCNT/H_(2)O) velocity slip conditions nonlinear thermal radiation exponential stretching/shrinking sheet inclined magnetohydrodynamic(MHD)stagnation flow
下载PDF
three sheets to the wind的来源及用法
14
作者 露西 《英语知识》 2006年第2期32-32,共1页
关键词 用法 “three sheets to the wind” 词源 英语
下载PDF
Textural Evolution of AZ31B Magnesium Alloy Sheets Undergoing Repeated Unidirectional Bending at Room Temperature 被引量:9
15
作者 Guangsheng Huang Wei Xu +2 位作者 Guangjie Huang Hongcheng Li Bo Song 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第3期365-369,共5页
In this paper, repeated unidirectional bending (RUB), was applied to improve the texture of AZ31B magnesium alloy sheets so as to enhance their stamping properties. The samples undergoing RUB were annealed at differ... In this paper, repeated unidirectional bending (RUB), was applied to improve the texture of AZ31B magnesium alloy sheets so as to enhance their stamping properties. The samples undergoing RUB were annealed at different temperatures. The mechanical properties, formability, textural components and microstructure of the samples before and after RUB were characterized and compared. It was found that the basal textural component was reduced dramatically by RUB, and that (1212) and (1211) textural components appeared. Annealing has a great effect on the mechanical properties of samples undergoing RUB. The plasticity and stamping formability of samples were greatly improved by RUB and annealing at 260℃ for 1 h, and elongation to fracture and Erichsen value were increased to 38% and 67%, respectively. 展开更多
关键词 Magnesium Alloy sheets Unidirectional bending Basal texture FORMABILITY
下载PDF
High-temperature Resistance Performance of An Inorganic Adhesive for Concrete Structures Strengthened with CFRP Sheets 被引量:5
16
作者 陈伟宏 QIU Hongxing 崔双双 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第5期950-954,共5页
Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive... Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures. 展开更多
关键词 strengthening RC structures CFRP sheets inorganic adhesive high-temperature resistance MICROSTRUCTURE
下载PDF
BEHAVIOR OF FLOW STRESS OF ALUMINUM SHEETS USED FOR PRESSURE CAN DURING COMPRESSION AT ELEVATED TEMPERATURE 被引量:9
17
作者 G.S. Fu W.Z. Chen K. W. Qian 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第6期756-762,共7页
The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynam... The behavior of flow stress of Al sheets used for pressure can prepared by different melt-treatment during plastic deformation at elevated temperature was studied by isothermal compression test using Gleeble1500 dynamic hot-simulation testing machine. The results show that the AI sheets possess the remarkable characteristic of steady state flow stress when they are deformed in the temperature range of 350-500℃ at strain rates within the range of 0.01-10.0s^-1. A hyperbolic sine relationship is found to correlate well the flow stress with the strain rate, and an Arrhenius relationship with the temperature, which implies that the process of plastic deformation at elevated temperature for this material is thermally activated. Compared with the AI pieces prepared by no or conventional melt-treatment, hot deformation activation energy of AI sheets prepared by high-efficient melt-treatment is the smallest ( Q= 168.0kJ/mol), which reveals that the hot working formability of this material is very better, and has directly to do with the effective improvement of its metallurgical quality. 展开更多
关键词 Al sheets used for can melt-treatment plastic deformation at elevatedtemperature flow stress hot deformation activation energy
下载PDF
Fabrication and Characterization of Nano-CaCO_3/Polypropylene Foam Sheets 被引量:4
18
作者 陈再良 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第4期607-611,共5页
By applying the reinforcing and toughening effect of calcium carbonate (CaCO3) nanoparticles on polypropylene, foam sheets of good performance were successfully fabricated by extrusion. The equipment and conditions ... By applying the reinforcing and toughening effect of calcium carbonate (CaCO3) nanoparticles on polypropylene, foam sheets of good performance were successfully fabricated by extrusion. The equipment and conditions of the extrusion were explored. The mechanical properties of the produced foam sheets were tested. The effect of CaCO3 nano-particles on the mechanical properties and the cellular structure of the sheets was comprehensively studied. The experimental results show that the optimum content of CaCO3 nano-particles in the composite material was -4wt%. At this content, the nano-particles were well dispersed in the substrate, and the composite material had maximum tensile strength and impact strength. Surface treatment of the nano-particles only affected the impact strength of the composite material. CaCO3 micro-particles, on the other hand, showed little effect on the properties of the composite material when the micro-particles content was less than 5 wt%. At a content higher than 5wt%, the properties of the composite material significantly worsened. 展开更多
关键词 calcium carbonat POLYPROPYLENE foam sheet composite material cellular structure
下载PDF
Effect of Interface Friction on Overlapping Sheets Bulging Formability and Microstructure of 5A02 Aluminum Alloy 被引量:3
19
作者 高铁军 YAO Yongjie +1 位作者 WANG Xiaokang SHAO Ruowei 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第4期919-924,共6页
Aluminum alloy 5 A02 with low plasticity was used as target sheet, and stainless steel SUS304 with good plasticity was used as overlapping sheet to investigate the effect of interface friction on bulging formability a... Aluminum alloy 5 A02 with low plasticity was used as target sheet, and stainless steel SUS304 with good plasticity was used as overlapping sheet to investigate the effect of interface friction on bulging formability and microstructure of target sheet in overlapping sheets bulging process. Sheet sliding experiment was performed to measure interface friction coefficient of 5 A02/SUS304 in different lubricating conditions and normal pressure. Overlapping sheets bulging experiment of 5 A02/SUS304 was carried out to investigate the influence of interface friction on limit bulging height, wall thickness distribution, microstructure and fracture morphology of 5 A02 bulging specimens. The results showed that increase of the interface friction coefficient of 5 A02/SUS304 could effectively improve the limit bulging height and deformation uniformity of 5 A02. And the fracture style of 5 A02 transformed from toughness fracture of dimples-micropores gathered to fault slip separation fracture. Therefore, target sheet bulging formability is improved with the increase of interface friction coefficient. 展开更多
关键词 OVERLAPPING sheets FORMING friction coefficient FORMABILITY MICROSTRUCTURE
下载PDF
INTERSECTIONS AND POLAR FUNCTIONS OF FRACTIONAL BROWNIAN SHEETS 被引量:4
20
作者 陈振龙 《Acta Mathematica Scientia》 SCIE CSCD 2008年第4期779-796,共18页
Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of contin... Let B^H={B^H(t),t∈R^N+}be a real-valued(N,d)fractional Brownian sheet with Hurst index H=(H1,…,HN).The characteristics of the polar functions for B^H are discussed.The relationship between the class of continuous functions satisfying Lipschitz condition and the class of polar-functions of B^H is obtained.The Hausdorff dimension about the fixed points and the inequality about the Kolmogorov’s entropy index for B^H are presented.Furthermore,it is proved that any two independent fractional Brownian sheets are nonintersecting in some conditions.A problem proposed by LeGall about the existence of no-polar continuous functions satisfying the Holder condition is also solved. 展开更多
关键词 Fractional Brownian sheet polar function Hausdorff dimension INTERSECTION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部