期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Effects of elastic-plastic properties of materials on residual indentation impressions in nano-indentation using sharp indenter
1
作者 Jung-Min LEE Chan-Joo LEE +1 位作者 Kyung-Hun LEE Byung-Min KIM 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期585-595,共11页
One of the primary features of nano-indentation technique is that the contact area induced by an indenter is indirectly measured by a relationship between the penetration depth and the known geometry of the indenter.H... One of the primary features of nano-indentation technique is that the contact area induced by an indenter is indirectly measured by a relationship between the penetration depth and the known geometry of the indenter.However,this indirect measurement occasionally leads to inaccurate properties of the indented material.The objective of this study is to investigate the effects of E/σr and the strain hardening exponents n of materials on the behaviors of pile-up and sink-in in nano-indentation and to predict n values of materials from the residual indentation impressions.The relations between the residual indentation profile and n value of the indented material were identified by dimensional analysis.Also,they were numerically formulated using FE analysis of nano-indentation for 140 different combinations of elastic-plastic parameters such as E,σy and n.The parameters of hrp/hm,herp/hm,Rr/hm and HO&P/Hreal were introduced as various dimensionless parameters to represent and quantify the residual indentation profile after indentation.They were subsequently characterized as dimensionless functions using n and E/σr values.Finally,the validity of these functions was verified through 3D FE analysis of nano-indentation for Al 6061-T6 and AISI 1010 materials. 展开更多
关键词 nano-indentation PILE-UP sink-in strain hardening EXPONENT FE simulation
下载PDF
Nano-indentation study on the(001) face of KDP crystal based on SPH method
2
作者 郭晓光 刘子源 +1 位作者 高航 郭东明 《Journal of Semiconductors》 EI CAS CSCD 2015年第8期71-77,共7页
In order to avoid the defects of mesh distortion when dealing with large deformation problems through using the finite element method, a mess-free simulation method--smooth particle hydrodynamics (SPH) has been intr... In order to avoid the defects of mesh distortion when dealing with large deformation problems through using the finite element method, a mess-free simulation method--smooth particle hydrodynamics (SPH) has been introduced. The material constitutive model of KDP crystal has been established based on the elastic-plastic theory. Then the nano-indentation on the (001) face of KDP crystal has been carried out using SPH method. Simulation results show that the maximum equivalent stress and the maximum plastic strain concentrate on the area that located near the tip of the indenter during the loading process. The distribution shape of Von Mises stress is similar to concentric circles. During the unloading process, no obvious variation of plastic strain distribution exists. The maximum Von Mises stress is mainly located at the indentation and its edge at the end of the unloading process. The approximate direct proportion relationship between the maximum indentation depth and the depth of the maximum Von Mises stress distribution has been discovered when the maximum load is lower than 8 mN. In addition, the nano-indentation experiments on KDP crystal's (001) face have been carried out. Both the material parameters and the adjusted stress-strain curve have been verified. The hindering role of the affected layer has been found and analyzed. 展开更多
关键词 KDP crystal (001) face nano-indentation SPH numerical simulation
原文传递
Effect of laser remelting on microstructure and mechanical properties of CrMnFeCoNi high entropy alloy 被引量:6
3
作者 郭伟 蔡艳 《China Welding》 CAS 2021年第2期1-10,共10页
Equiatomic CrMnFeCoNi high entropy alloy prepared by powder metallurgy was remelted by laser.The relative density and microstructure of fusion zone are evaluated.The nanoindentation tests are conducted to reveal the h... Equiatomic CrMnFeCoNi high entropy alloy prepared by powder metallurgy was remelted by laser.The relative density and microstructure of fusion zone are evaluated.The nanoindentation tests are conducted to reveal the hardness difference of dendrite arms and interdendritic areas.Tensile tests are conducted to assess the mechanical properties of remelted HEA.After laser remelting,the number and morphology of voids changed significantly.Dendritic structure with face-centered cubic phase form in the fusion zone.Fe,Cr and Co are enriched in dendrite arm,while Mn and Ni are enriched in interdendritic area.Elements segregation led to a nanohardness difference between dendrite arm and interdendritic area.Local deformation occurs in interdendritic area during tensile tests and results in a fracture with directionality. 展开更多
关键词 high-entropy alloy powder metallurgy laser remelting dendritic segregation nano-indentation
下载PDF
Sandstone-concrete interface transition zone (ITZ) damage and debonding micromechanisms under freeze-thaw 被引量:3
4
作者 YanJun Shen Huan Zhang +3 位作者 JinYuan Zhang HongWei Yang Xu Wang Jia Pan 《Research in Cold and Arid Regions》 CSCD 2021年第2期133-149,共17页
The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete sur... The sufficient bond between concrete and rock is an important prerequisite to ensure the effect of shotcrete support. However, in cold regions engineering protection system, the bond condition of rock and concrete surface is easily affected by freeze-thaw cycles, resulting in interface damage, debonding and even supporting failure. Understanding the micromechanisms of the damage and debonding of the rock-concrete interface is essential for improving the interface protection.Therefore, the micromorphology, micromechanical properties, and microdebonding evolution of the sandstone-concrete interface transition zone(ITZ) under varying freeze-thaw cycles(0, 5, 10, 15, 20) were studied using scanning electron microscope, stereoscopic microscope, and nano-indentation. Furthermore, the distribution range and evolution process of ITZ affected by freeze-thaw cycles were defined. Major findings of this study are as follows:(1) The microdamage evolution law of the ITZ under increasing freeze-thaw cycles is clarified, and the relationship between the number of cracks in the ITZ and freeze-thaw cycles is established;(2) As the number of freeze-thaw cycles increases, the ITZ's micromechanical strength decreases, and its development width tends to increase;(3) The damage and debonding evolution mechanisms of sandstone-concrete ITZ under freeze-thaw cycles is revealed, and its micromechanical evolution model induced by freeze-thaw cycles is proposed. 展开更多
关键词 sandstone-concrete interface transition zone(ITZ) freeze-thaw cycles nano-indentation damage and debonding
下载PDF
Characterization of the Diamond-like Carbon Based Functionally Gradient Film 被引量:1
5
作者 FengMA XunCAI +2 位作者 GangLI QiulongCHEN HongtaoMA 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2002年第5期447-450,共4页
Diamond-like carbon coatings have been used as solid lubricating coatings in vacuum technology for their good physical and chemical properties. In this paper, the hybrid technique of unbalanced magnetron sputtering an... Diamond-like carbon coatings have been used as solid lubricating coatings in vacuum technology for their good physical and chemical properties. In this paper, the hybrid technique of unbalanced magnetron sputtering and plasma immersion ion implantation (Plll) was adopted to fabricate diamond-like carbon-based functionally gradient film, N/TiN/Ti(N,C)/DLC, on the 304 stainless steel substrate. The film was characterized by using Raman spectroscopy and glancing X-ray diffraction (GXRD), and the topography and surface roughness of the film was observed using AFM. The mechanical properties of the film were evaluated by nano-indentation. The results showed that the surface roughness of the film was approximately 0.732 nm. The hardness and elastic modulus, fracture toughness and interfacial fracture toughness of N/TiN/Ti(N,C)/DLC functionally gradient film were about 19.84 GPa, 190.03 GPa, 3.75 MRa.m1/2 and 5.68 MPa.m1/2, respectively. Compared with that of DLC monolayer and C/TiC/DLC multilayer, this DLC gradient film has better qualities as a solid lubricating coating. 展开更多
关键词 Diamond like carbon nano-indentation Raman scattering spectroscopy AFM
下载PDF
Microstructure and mechanical properties of as-cast(CuNi)100-xCox medium-entropy alloys 被引量:1
6
作者 Zhi-yong Yang Wei-ping Chen +4 位作者 Liang-yan Hao Chen-liang Chu Da-hai Zeng Wei Xiong Zhi-qiang Fu 《China Foundry》 SCIE CAS 2022年第6期511-518,共8页
Microstructure and mechanical properties of non-equiatomic(CuNi)_(100-x)Co_(x)(x=15,20,25 and 30,at.%)medium-entropy alloys(MEAs)prepared by vacuum arc-melting were investigated.Results show that all the as-cast MEAs ... Microstructure and mechanical properties of non-equiatomic(CuNi)_(100-x)Co_(x)(x=15,20,25 and 30,at.%)medium-entropy alloys(MEAs)prepared by vacuum arc-melting were investigated.Results show that all the as-cast MEAs exhibit dual face-centered cubic(fcc)solid-solution phases with identical lattice constant,showing typical dendrite structure consisting of(Ni,Co)-rich phase in dendrites and Cu-rich phase in inter-dendrites.The positive enthalpy of mixing among Cu and Ni-Co elements is responsible for the segregation of Cu.With the increase of Co content,the volume fraction of(Ni,Co)-rich phase increases while the Cu-rich phase decreases,resulting in an increment of yield strength and a decrement of elongation for the(CuNi)_(100-x)Co_(x) MEAs.Nano-indentation test results show a great difference of microhardness between the two fcc phases of the MEAs.The measured microhardness value of the(Ni,Co)-rich phase is almost twofold as compared to that of the Cu-rich phase in all the(CuNi)_(100-x)Co_(x) MEAs.During the deformation of the MEAs,the Cu-rich phase bears the main plastic strain,whereas the(Ni,Co)-rich phase provides more pronounced strengthening. 展开更多
关键词 medium-entropy alloys microstructure mechanical properties nano-indentation
下载PDF
Design and micro mechanical properties of nano-SiO_2 strengthened composite coatings towards remanufacturing
7
作者 王红美 刘存龙 +1 位作者 史佩京 徐滨士 《Journal of Central South University》 SCIE EI CAS 2005年第S2期190-194,共5页
Nano-SiO2 particles strengthened Ni-based composite coating was designed and prepared on steel substrate. The structures and nanoparticle content of the nano-SiO2/Ni composite coating were determined by SEM, EDS and T... Nano-SiO2 particles strengthened Ni-based composite coating was designed and prepared on steel substrate. The structures and nanoparticle content of the nano-SiO2/Ni composite coating were determined by SEM, EDS and TEM; and the micro mechanical properties were tested by nano-indentation technique. The results show that 56% of particles in the solution are dispersed in size of less than 100nm, the content of nanoparticles co-deposited in the coating doubles and structure of the coating is more compact and uniform than that of Ni coating. Nano-SiO2/Ni coating exhibits excellent micro mechanical properties, and the nanohardness and elastic modulus are 7.81GPa and 198GPa, respectively, which are attributed to finer crystal strengthening, dispersion strengthening and high-density dislocation strengthening of nano-SiO2 particles to the composite coatings. 展开更多
关键词 REMANUFACTURING NANO-COMPOSITE coating nano-indentation MICRO MECHANICAL property
下载PDF
Determinationofelasticmodulus of claystone:Nano-/micro-indentation andmeso-compression tests used to investigate impact of alkaline fluid propagation over 18 years
8
作者 Danièle Bartier Christophe Auvray 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第3期129-136,共8页
Micro-mechanical properties of a claystone were tested after undergoing alkaline perturbation on site(Tournemire,CD borehole)for 18 years.In a saturated context and outside the excavation disturbed zone(EDZ),the clays... Micro-mechanical properties of a claystone were tested after undergoing alkaline perturbation on site(Tournemire,CD borehole)for 18 years.In a saturated context and outside the excavation disturbed zone(EDZ),the claystone exhibits a 11.6-mm black rim at the cement/paste interface,which shows a different mechanical behaviour from the rest of the claystone.Three sets of measurements of elastic modulus were performed using:(i)nano-indentation tests with a constant indentation depth of 2 mm,(ii)microindentation tests with a constant indentation depth of 20 mm,and(iii)meso-compression tests with a constant displacement of 200 mm.The increase of the modulus of deformability in the black rim is between 15 GPa and 20 GPa according to the scale.Moreover,an overall decrease of the modulus of deformability from the smallest to the largest scale is observed in each zone.In view of the mineralogy and petrographic observations,higher values of modulus of deformability in the black rim are related to carbonate content and its distribution.Precipitation of cementitious carbonates as inclusions and very thin partings leads to hardening of the claystone. 展开更多
关键词 Claystone Elastic modulus nano-indentation MICRO-INDENTATION Meso-compression Carbonate Claystone/cement paste contact
下载PDF
Intratree Variation in Viscoelastic Properties of Cell Walls of Masson Pine (Pinus Massoniana Lamb)
9
作者 Shaoxiang Cai Yuliang Guo Yanjun Li 《Journal of Renewable Materials》 SCIE EI 2022年第1期119-133,共15页
In this study,Pinus massoniana Lamb at different heights,across the annual rings,and between earlywood and latewood was measured by X-ray diffraction and the chemical composition was analyzed by chemical treatment.Res... In this study,Pinus massoniana Lamb at different heights,across the annual rings,and between earlywood and latewood was measured by X-ray diffraction and the chemical composition was analyzed by chemical treatment.Results indicated that the microfibril angle(MFA)decreased and the chemical composition changed little with the increase in height from 1 m to 9 m.In the radial direction,the MFA decreased and the chemical composition changed little with an increase in annual rings.The cellulose content of latewood was higher than that of early-wood.The viscoelastic changes of wood cell walls at different heights,across the annual rings by the method of quasi-static nanoindentation and dynamic modulus mapping techniques.Results indicated that the wood cell walls’elastic modulus increased,and the creep rate and creep compliance decreased with the increase in height;The elastic modulus and hardness increased with the annual rings.The cell walls’storage modulus increased and the loss modulus gradually decreased with an increase in height;the storage modulus gradually increased and the loss modulus decreased with the annual rings. 展开更多
关键词 Pinus massoniana lamb cell wall nano-indentation VISCOELASTICITY dynamic modulus mapping
下载PDF
Atomistic simulations on adhesive contact of single crystal Cu and wear behavior of Cu-Zn alloy
10
作者 叶有俊 秦乐 +2 位作者 李京 刘麟 吴凌康 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第2期442-448,共7页
Atomistic simulations are carried out to investigate the nano-indentation of single crystal Cu and the sliding of the Cu-Zn alloy.As the contact zone is extended due to adhesive interaction between the contact atoms,t... Atomistic simulations are carried out to investigate the nano-indentation of single crystal Cu and the sliding of the Cu-Zn alloy.As the contact zone is extended due to adhesive interaction between the contact atoms,the contact area on a nanoscale is redefined.A comparison of contact area and contact force between molecular dynamics(MD)and contact theory based on Greenwood-Williamson(GW)model is made.Lower roughness causes the adhesive interaction to weaken,showing the better consistency between the calculated results by MD and those from the theoretical model.The simulations of the sliding show that the substrate wear decreases with the mol%of Zn increasing,due to the fact that the diffusion movements of Zn atoms in substrate are blocked during the sliding because of the hexagonal close packed(hcp)structure of Zn. 展开更多
关键词 atomistic simulation nano-indentation wear behavior
下载PDF
Measurement of the Energy Absorbed during Nanoscale Deformation of Human Peritubular and Intertubular Dentin
11
作者 Jiahau Yan Burak Taskonak John J. Mecholsky Jr. 《Materials Sciences and Applications》 2022年第4期144-157,共14页
Mineralized tissues are usually constructed of nanosized materials with ordered hierarchical structures. The main reason for their high load-bearing ability is the multi-scale hierarchy. It is important to have a meth... Mineralized tissues are usually constructed of nanosized materials with ordered hierarchical structures. The main reason for their high load-bearing ability is the multi-scale hierarchy. It is important to have a method for measuring the energy absorbed during the nanoscale deformation of mineralized tissues. The objective of this study was to use a combination of nanoindentation and elastic-plastic mechanics techniques to measure the damage resistance of peritubular and intertubular dentin, based on the energy consumed in the plastic deformation regime and the volume created by the indents. The control materials were soda-lime glass, gold, and poly-methyl methacrylate (PMMA). Plastic deformation energy was calculated from the plastic part of load-displacement curves. The mean values of peritubular dentin and intertubular dentin were 3.8 × 10<sup>9</sup>, and 5.2 × 10<sup>9</sup> J/m<sup>3</sup>, respectively, compared to glass, PMMA, and gold which were 3.3 × 10<sup>7</sup>, 1.3 × 10<sup>9</sup>, and 3.1 × 10<sup>9</sup> J/m<sup>3</sup>, respectively. This method can be applied to study the resistance of mineralized tissues or organic/inorganic hybrid materials to deformation at the nanoscale. 展开更多
关键词 DENTIN nano-indentation Plastic Deformation Energy Elastic-Plastic Mechanics
下载PDF
Exploring the Effect of Plasticity on the Phase Imaging of TM-AFM Through Molecular Dynamics Simulations
12
作者 Guolin Liu Yu Zeng +1 位作者 Yaxin Chen Zheng Wei 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2024年第2期297-304,共8页
In the tapping-mode atomic force microscope(TM-AFM),the probe tip continuously taps the sample surface,which may cause plastic deformation of the sample and result in energy dissipation.The energy dissipation of the p... In the tapping-mode atomic force microscope(TM-AFM),the probe tip continuously taps the sample surface,which may cause plastic deformation of the sample and result in energy dissipation.The energy dissipation of the probe is closely related to the scanned phase image.To quantify the energy dissipation due to plastic indentations of the sample,this study utilized a combination of molecular dynamics(MD)simulations and experiments on single-crystal copper samples,including multiple nano-indentation tests.The energy dissipation of the probe due to the plastic deformation of the sample was calculated by integrating the hysteresis curve of the indentation depth versus the force applied to the indenter.The simulation results are in good agreement with the experimental ones.Both sets of results have demonstrated that the plastic energy dissipation decreases as the number of indentations increases,and eventually the energy of the probe tends to stabilize.This equilibrium energy dissipation is associated with other dissipation mechanisms.Furthermore,it was observed that,after hundreds of taps,the dissipated energy of plastic deformation could be ignored,implying that the scanned image may not reflect the plasticity information of the sample after multiple taps of the probe on the sample surface for scanning. 展开更多
关键词 Atomic force microscopy Force-distance curves nano-indentations PLASTICITY Molecular dynamics
原文传递
Refined microstructure and enhanced mechanical properties of AlCrFe_(2)Ni_(2) medium entropy alloy produced via laser remelting 被引量:6
13
作者 Tianyi Han Yong Liu +4 位作者 Mingqing Liao Danni Yang Nan Qu Zhonghong Lai Jingchuan Zhu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第4期18-27,共10页
A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properti... A Co-free as-cast AlCrAlCrFe_(2)Ni_(2)medium entropy alloy(MEA)with multi-phases was remelted by fiber laser in this study.The effect of laser remelting on the microstructure,phase distribution and mechanical properties was investigated by characterizing the as-cast and the remelted AlCrAlCrFe_(2)Ni_(2)alloy.The laser remelting process resulted in a significant decrease of grain size from about 780μm to 58.89μm(longitudinal section)and 15.87μm(transverse section)and an increase of hardness from 4.72±0.293 GPa to 6.40±0.147 GPa(longitudinal section)and 7.55±0.360 GPa(transverse section).It was also found that the long side plate-like microstructure composed of FCC phase,ordered B2 phase and disordered BCC phase in the as-cast alloy was transformed into nano-size weave-like microstructure consisting of alternating ordered B2 and disordered BCC phases.The mechanical properties were evaluated by the derived stressstrain relationship obtained from nano-indentation tests data.The results showed that the yield stress increased from 661.9 MPa to 1347.6 MPa(longitudinal section)and 1647.2 MPa(transverse section)after remelting.The individual contribution of four potential strengthening mechanisms to the yield strength of the remelted alloy was quantitatively evaluated,including grain boundary strengthening,dislocation strengthening,solid solution strengthening and precipitation strengthening.The calculation results indicated that dislocation and precipitation are dominant strengthening mechanisms in the laser remelted MEA. 展开更多
关键词 Medium entropy alloy Laser remelting MICROSTRUCTURE nano-indentation Strengthening mechanism
原文传递
Plasma Spray Deposition of HA-TiO2 on β-phase Ti-35Nb-7Ta-5Zr Alloy for Hip Stem: Characterization of Bio-mechanical Properties, Wettability, and Wear Resistance 被引量:2
14
作者 Harjit Singh Chander Prakash Sunpreet Singh 《Journal of Bionic Engineering》 SCIE EI CSCD 2020年第5期1029-1044,共16页
In this work,a biomimetic coating of hydroxyapatite(HA)-and titania(TiO2)was deposited on low elastic β-phase Ti-35Nb-7Ta-5Zr(β-TNTZ)alloy by plasma spray deposition technique for orthopedic applications.The effect ... In this work,a biomimetic coating of hydroxyapatite(HA)-and titania(TiO2)was deposited on low elastic β-phase Ti-35Nb-7Ta-5Zr(β-TNTZ)alloy by plasma spray deposition technique for orthopedic applications.The effect of TiO2 reinforcement on microstructure,mechanical properties,and bioactivity was investigated.The morphology,coating thickness,elemental composition,and phase composition of the developed coatings were characterized.The biomechanical behavior of the deposited coatings was investigated in terms of surface hardness,elastic modulus,and adhesion strength.It was found from the morphological investigation that the TiO2 reinforcement improves the microstructure and prevents the formation of defects in the coating.The biomimetic HA-TiO2 coated surface possessed pores,size ranging from 200 nm-600 nm that benefits the apatite growth and osseointegration.The EDS spectrum,mapping,and XRD analysis show that the deposited layerβ-TCP,CaO,TTCP,TiO2 phases.The HA-TiO2 coating exhibits a very dense and thick layer of 100μm-125am that exhibits excellent adhesion strength to offer mechanical interlocking to prevent delamination.The alloying of TiO2 improves the hardness from 1.67 GPa to 2.95 GPa that enhances the wear resistance.It was found that HA-TiO2 coating exhibits better hydrophilic and biocompatible surface as compared to HA-coating. 展开更多
关键词 β-phase Ti-35Nb-7Ta-5Zr alloy plasma spray porosities bio-ceramic coating nano-indentation hardness bond strength WETTABILITY
原文传递
Morphology and Mechanical Properties of Vibratory Organs in the Leaf-cutting Ant (Atta cephalotes) 被引量:2
15
作者 Guang Yao Lin Feng +1 位作者 Deyuan Zhang Xinggang Jiang 《Journal of Bionic Engineering》 SCIE EI CSCD 2018年第4期722-730,共9页
The ultrasonic scalpel has a number of excellent properties; however, its use in in vivo surgery is limited since the scalpel is not flexible enough. Changing the mechanism of ultrasonic vibration can allow the ultras... The ultrasonic scalpel has a number of excellent properties; however, its use in in vivo surgery is limited since the scalpel is not flexible enough. Changing the mechanism of ultrasonic vibration can allow the ultrasonic scalpel to bend. This paper reveals the mecha- nism of vibration generation of leaf-cutting ants, which is based on the microstructural and mechanical properties of special organs that produce the vibrations. Mierostructural characteristics of cross-sections of the vibratory organ of Atta cephalotes were observed using scanning electron microscopy. It was found that the scraper perfectly matches the file plate dorsoventrally; however, the file teeth cannot catch the scraper. An exploration of the kinematics of the file-scraper device was subsequently carried out to reveal a face-to-face contact mode, facilitating a gentler engagement process. For the first time, the mechanism of vibration generation of leaf-cutting ants was inves- tigated using a laser micrometer and high-speed camera. Results reveal the file-scraper device significantly amplifies the input frequency by 125 times, and magnification depends mainly on the tooth spacing and speed of engagement. Finally, nanoindentation tests were performed on file and scraper samples. The results show that they have similar mechanical properties, which greatly reduces friction and wear. This paper may provide theoretical guidance for the develooment of bionic vibration generators. 展开更多
关键词 leaf-cutting ant vibration mechanism file-scraper device nano-indentation
原文传递
The Dissymmetry of Friction Stir Welding Joints and Va-riable Polarity Plasma Arc Welding Joints Study
16
作者 Chen Shujun,Wang Long,Yu Yang Beijing University of Technology Mechanical Engineering,Beijing100022,China 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第S4期84-89,共6页
2219 aluminum alloys welding joints were prepared by Friction stir welding (FSW) and Variable polarity plasma arc welding (VPPAW).The microstructure of joints was characterized by means of OM,SEM,and EDX.Microhardness... 2219 aluminum alloys welding joints were prepared by Friction stir welding (FSW) and Variable polarity plasma arc welding (VPPAW).The microstructure of joints was characterized by means of OM,SEM,and EDX.Microhardness measurements was performed to differentiate the joint zones and to evaluate the symmetry level of the joints with the help of nano-indentation experiment.The dissymmetry of microstructure and mechanical properties was found both in FSW joint and VPPAW joint.The dissymmetry in FSW joint can not be suppressed due to the nature of the mixing head,but the symmetry and satisfactory welding joint can be obtained by changing the working pattern of VPPAW. 展开更多
关键词 FSW VPPAW nano-indentation experiment "Half-leaf" zone dissymmetry
原文传递
Small-scale analysis of brittle-to-ductile transition behavior in pure tungsten
17
作者 Yeonju Oh Won-Seok Ko +3 位作者 Nojun Kwak Jae-il Jang Takahito Ohmura Heung Nam Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第10期242-258,共17页
Tungsten as a material exhibits broad and increasingly important applications;however,the characterization of its ductile-to-brittle transition(BDT)is currently limited to large-scale scenarios and destructive testing... Tungsten as a material exhibits broad and increasingly important applications;however,the characterization of its ductile-to-brittle transition(BDT)is currently limited to large-scale scenarios and destructive testing.In this study,we overcome this challenge by implementing small-scale techniques to provide a comprehensive understanding of the BDT behavior of pure tungsten.In order to predict the failure mode at various temperature ranges,the practical fracture analysis diagram has been proposed to describe the resistance to shear flow and cracking behavior with temperature.High temperature nano-indentation tests have provided the inherent mechanical responses corresponding to the maximum shear stress at various temperatures,which is required for dislocation activities in an atomic scaled activation volume.On one hand,atomistic simulations have provided the temperature dependence of brittle fracture stress,where the atomic bonds break due to intergranular or intragranular fracture.We considered four tungsten specimens having various microstructures prepared using different processing conditions of cold-rolling and post-annealing,and their BDT ranges were inferred using the obtained fracture analysis diagram with the statistical data processing.The fracture analysis diagram of each specimen obtained were compared with the direct observation of fracture responses in macroscopic mechanical tests,which conclusively indicated that the small-scale inherent mechanical properties are greatly relevant to the macroscopic BDT behavior in pure tungsten.Based on the BDT estimations by small-scale characterization,we provided further insights into the factors affecting the BDT behavior of tungsten,focusing on the contributions of different types of dislocations. 展开更多
关键词 Brittle-to-ductile transition nano-indentation Molecular dynamics DISLOCATION TUNGSTEN
原文传递
Nano-machining of materials: understanding the process through molecular dynamics simulation
18
作者 Dan-Dan Cui Liang-Chi Zhang 《Advances in Manufacturing》 SCIE CAS CSCD 2017年第1期20-34,共15页
Molecular dynamics (MD) simulation has been widely applied in various complex, dynamic processes at atomistic scale, because an MD simulation can provide some deformation details of materials in nano-processing and ... Molecular dynamics (MD) simulation has been widely applied in various complex, dynamic processes at atomistic scale, because an MD simulation can provide some deformation details of materials in nano-processing and thus help to investigate the critical and important issues which cannot be fully revealed by experiments. Extensive research with the aid of MD simulation has provided insights for the development of nanotechnology. This paper reviews the fundamentals of nano-machining from the aspect of material structural effects, such as single crystalline, polycrystalline and amorphous materials. The classic MD simulations of nano-indentation and nano-cutting which have aimed to investigate the machining mechanism are discussed with respect to the effects of tool geometry, material properties and machining parameters. On nano-milling, the discussion focuses on the understanding of the grooving quality in relation to milling conditions. 展开更多
关键词 Molecular dynamics Nano-milling nano-indentation Nano-cutting Groove quality Multi-grooving
原文传递
Influence of Filler on the Microstructure, Mechanical Properties and Residual Stresses in TIG Weldments of Dissimilar Titanium Alloys
19
作者 Massab Junaid Fahd Nawaz Khan +2 位作者 Tauheed Shahbaz Haris saleem Julfikar Haider 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第10期1395-1406,共12页
The influence of titanium alloy(Ti–5 Al–2.5 Sn) and commercially pure titanium(cp Ti) as fillers on dissimilar pulsed tungsten inert gas weldments of Ti–5 Al–2.5 Sn/cp Ti was investigated in terms of microstructur... The influence of titanium alloy(Ti–5 Al–2.5 Sn) and commercially pure titanium(cp Ti) as fillers on dissimilar pulsed tungsten inert gas weldments of Ti–5 Al–2.5 Sn/cp Ti was investigated in terms of microstructure, mechanical/nano-mechanical properties, and residual stresses. A partial martensitic transformation was observed in the weldments for all the welding conditions due to high heat input. The microstructure evolved in the FZ/cp Ti interfacial region was observed to be the most sensitive to the proportion of α stabilizer in the filler alloy. Furthermore, the addition of filler alloy improved the tensile properties and nano-mechanical response of the weld joint owing to the increased volume of metal in the weld joint. As compared to the Ti–5 Al–2.5 Sn wire, the use of cp Ti filler wire proved to be better in terms of energy absorbed during tensile and impact tests, tensile strength and ductility of the dissimilar welds. An asymmetrical residual stresses profile was observed close to the weld centerline, with high compressive stresses on the Ti–5 Al–2.5 Sn side for both the weldments obtained with and without filler wires. This was attributed to mainly the low thermal conductivity of Ti–5 Al–2.5 Sn. The presence of residual stresses also influenced the nano-hardness profile across the weldments. 展开更多
关键词 Titanium alloys Dissimilar welding nano-indentation Residual stresses Tungsten inert gas(TIG)welding MICROSTRUCTURE
原文传递
Surface modification of 316L stainless steeldiamond-like carbon films
20
作者 Rui-wu Li Zheng Zhang +4 位作者 Jian-wei Li Ke-xin Ma Yuan-yuan Guo Yan-wen Zhou Fa-yu Wu 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2020年第7期867-874,共8页
The diamond-like carbon(DLC)film on 316L stainless steel substrate was preparedpulsed plasma-enhanced chemical vapor deposition,and the performance of the films was optimizedregulating the pulse voltage.Microstructure... The diamond-like carbon(DLC)film on 316L stainless steel substrate was preparedpulsed plasma-enhanced chemical vapor deposition,and the performance of the films was optimizedregulating the pulse voltage.Microstructure and properties of DLC film on 316L stainless steel were characterizedatomic force microscopy,field-emission scanning electron microscopy,Raman spectra,nano-indenter and electrochemical workstations.The results showed that DLC films with smooth and dense morphology have a low friction coefficient and high nano-indentation hardness,and the surface hardness of 316L stainless steel substrate was enhancedmore than 3 times.The mechanical properties of DLC films and their bond with 316L stainless steel could be further optimizedincreasing pulse voltage.DLC films on 316L stainless steel substrate increased the self-corrosion potential0.173 V and decreased self-corrosion current99%,which significantly improved the anti-corrosive properties of 316L substrate. 展开更多
关键词 316L stainless steel Diamond-like carbon film Plasma enhanced chemical vapor deposition Frictional wear nano-indentation Corrosion resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部