The zinc oxide nano-particles have been used in this research. In this work, zinc oxide nanoparticles have been added to light and heavy crude oil. In this research, thermoelectric and physical properties of light and...The zinc oxide nano-particles have been used in this research. In this work, zinc oxide nanoparticles have been added to light and heavy crude oil. In this research, thermoelectric and physical properties of light and heavy crude petroleum have been measured, experimentally. In addition, dimensionless groups in hydrodynamics and heat transfer calculations are presented. This research illustrates that heat capacity of light and heavy crude petroleum varies from 4256 J/kg·°C to 4457 J/kg·°C and 4476 J/kg·°C to 5002 J/kg·°C, respectively. Moreover, heat capacity of light and heavy nano-crude petroleum is changing from about 4285 J/kg·°C to 4496 J/kg·°C and 4494 J/kg·°C to 5021 J/kg·°C, respectively.展开更多
On the SEM micrographs of Ti implanted H13 steel, a tree-branch-like structure can be observed. Further investigation with TEM shows that the newly formed composition is a formation of nano-meter FeTi2 phase in Ti imp...On the SEM micrographs of Ti implanted H13 steel, a tree-branch-like structure can be observed. Further investigation with TEM shows that the newly formed composition is a formation of nano-meter FeTi2 phase in Ti implanted layer. The layer with a relatively high corrosion resistance has been formed in Ti implanted H13 steel with this structure. The results of electrochemical measurement show that the corrosion current density decreases obviously with an increase of ion dose. The corrosion current density in Ti implanted steel with a dose of 1.3×1018/cm2 is 8–20 times less than that of Ti implanted steel with a dose of 6×1017/cm2. The corrosion behavior of Ti implanted steel with a dose of 6×1017/cm2 could be further improved as the sample was annealed at 500°C for 20 min and the corrosion current density decreases by 48–80 times compared to that of non-implanted samples. The corrosion trace was not observed on the annealing sample by SEM, after multi-sweep cyclic voltammetry of 40 cycles were performed. This indicates that terrific corrosion resistance can be obtained after annealing for Ti implanted sample.展开更多
Marine fouling is a worldwide challenge with huge damages on industrial structures,side effects on economics of industries,and environmental and safety-related hazards.Different approaches have been used for combating...Marine fouling is a worldwide challenge with huge damages on industrial structures,side effects on economics of industries,and environmental and safety-related hazards.Different approaches have been used for combating fouling in the marine environment.Meanwhile,nanocomposite polymer coatings are a novel generation of antifouling coatings with merits of toxin-free chemical composition and ease of large-scale application.Nanomaterials such as nano-metals,nano-metal oxides,metal-organic frameworks,carbon-based nanostructures,MXene,and nanoclays have antibacterial and antifouling properties in the polymer coatings.Besides,these nanomaterials can improve the corrosion resistance,mechanical strength,weathering stability,and thermal resistance of the polymer coatings.Therefore,in this review paper,the antifouling nanocomposite coatings are introduced and antifouling mechanisms are discussed.This review explicitly indicates that the antifouling efficiency of the nanocomposite coatings depends on the properties of the polymer matrix,the inherent properties of the nanomaterials,the weight percent and the dispersion method of the nanomaterials within the coating matrix,and the chemicals used for modifying the surface of the nanomaterials;meanwhile,the hybrids of different nanomaterials and appropriate chemical agents could be used to improve the antifouling behavior of the prepared nanocomposites.Moreover,the theoretical studies are introduced to pave the way of researchers working on theantifouling coatings,and the importance of the theoretical studies and computational modeling along with the experimental research is notified to develop antifouling coatings with high efficiency.展开更多
文摘The zinc oxide nano-particles have been used in this research. In this work, zinc oxide nanoparticles have been added to light and heavy crude oil. In this research, thermoelectric and physical properties of light and heavy crude petroleum have been measured, experimentally. In addition, dimensionless groups in hydrodynamics and heat transfer calculations are presented. This research illustrates that heat capacity of light and heavy crude petroleum varies from 4256 J/kg·°C to 4457 J/kg·°C and 4476 J/kg·°C to 5002 J/kg·°C, respectively. Moreover, heat capacity of light and heavy nano-crude petroleum is changing from about 4285 J/kg·°C to 4496 J/kg·°C and 4494 J/kg·°C to 5021 J/kg·°C, respectively.
基金Project supported by the National Natural Science Foundation of China (Grant No. 59671051), and 863 National High-Tech Programme of China.
文摘On the SEM micrographs of Ti implanted H13 steel, a tree-branch-like structure can be observed. Further investigation with TEM shows that the newly formed composition is a formation of nano-meter FeTi2 phase in Ti implanted layer. The layer with a relatively high corrosion resistance has been formed in Ti implanted H13 steel with this structure. The results of electrochemical measurement show that the corrosion current density decreases obviously with an increase of ion dose. The corrosion current density in Ti implanted steel with a dose of 1.3×1018/cm2 is 8–20 times less than that of Ti implanted steel with a dose of 6×1017/cm2. The corrosion behavior of Ti implanted steel with a dose of 6×1017/cm2 could be further improved as the sample was annealed at 500°C for 20 min and the corrosion current density decreases by 48–80 times compared to that of non-implanted samples. The corrosion trace was not observed on the annealing sample by SEM, after multi-sweep cyclic voltammetry of 40 cycles were performed. This indicates that terrific corrosion resistance can be obtained after annealing for Ti implanted sample.
基金supported financially by the CAS President’s International Fellowship Initiative 2019(PIFI,No.2019PE0059)CAS-VPST Silk Road Science Fund 2021(133137KYSB20200034)INSF’s Project No.99010368。
文摘Marine fouling is a worldwide challenge with huge damages on industrial structures,side effects on economics of industries,and environmental and safety-related hazards.Different approaches have been used for combating fouling in the marine environment.Meanwhile,nanocomposite polymer coatings are a novel generation of antifouling coatings with merits of toxin-free chemical composition and ease of large-scale application.Nanomaterials such as nano-metals,nano-metal oxides,metal-organic frameworks,carbon-based nanostructures,MXene,and nanoclays have antibacterial and antifouling properties in the polymer coatings.Besides,these nanomaterials can improve the corrosion resistance,mechanical strength,weathering stability,and thermal resistance of the polymer coatings.Therefore,in this review paper,the antifouling nanocomposite coatings are introduced and antifouling mechanisms are discussed.This review explicitly indicates that the antifouling efficiency of the nanocomposite coatings depends on the properties of the polymer matrix,the inherent properties of the nanomaterials,the weight percent and the dispersion method of the nanomaterials within the coating matrix,and the chemicals used for modifying the surface of the nanomaterials;meanwhile,the hybrids of different nanomaterials and appropriate chemical agents could be used to improve the antifouling behavior of the prepared nanocomposites.Moreover,the theoretical studies are introduced to pave the way of researchers working on theantifouling coatings,and the importance of the theoretical studies and computational modeling along with the experimental research is notified to develop antifouling coatings with high efficiency.