Macrophytes are usually chosen for phytoremediation tools to remove P in eutrophic aquatic ecosystems,but the lack of test methods hinders the understanding of removal mechanism and application.In this study,we used t...Macrophytes are usually chosen for phytoremediation tools to remove P in eutrophic aquatic ecosystems,but the lack of test methods hinders the understanding of removal mechanism and application.In this study,we used the novel technologies combined of Diffusive gradients in thin films(DGT),Planar optode(PO),and Non-invasive micro-test technology(NMT)to explore P dynamics in water-sediment continuum and rhizosphere of Potamogeton crispus over time.Results of the high-resolution in situ measurement showed that labile P(LPDGT)fluxes at the surficial sediment significantly decreased from approximate 120,140,and 200 pg/(cm^(2)·sec)via 30 days incubation period to 17,40,and 56 pg/(cm2•sec)via that of 15 days.Obvious synchronous increase of LPDGT was not detected in overlying water,suggesting the intense assimilation of dissolve reactive P via root over time.PO measurement indicated that O_(2)concentration around the rhizosphere remarkably increased and radially diffused into deeper sediment until 100%saturation along with the root stretch downwards.NMT detection of roots showed the obvious O_(2)inflow into root tissue with the uppermost flux of 30 pmol/(cm2•sec)from surroundings via aerenchyma on different treatment conditions.Different from previous reports,gradually saturating O_(2)concentrations around the rhizosphere was principally driven by O_(2)penetration through interspace attributing to root stretch downward rather than root O_(2)leakage.Increased O_(2)concentrations in deep sediment over time finally induced the oxidization of labile Fe(II)into Fe(III)bound P and local P immobilization.展开更多
基金supported by National Natural Science Foundation of China(Nos.41503099,31971476)the CAS Interdisciplinary Innovation Team(No.JCTD-2018-16)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LYDQC018).
文摘Macrophytes are usually chosen for phytoremediation tools to remove P in eutrophic aquatic ecosystems,but the lack of test methods hinders the understanding of removal mechanism and application.In this study,we used the novel technologies combined of Diffusive gradients in thin films(DGT),Planar optode(PO),and Non-invasive micro-test technology(NMT)to explore P dynamics in water-sediment continuum and rhizosphere of Potamogeton crispus over time.Results of the high-resolution in situ measurement showed that labile P(LPDGT)fluxes at the surficial sediment significantly decreased from approximate 120,140,and 200 pg/(cm^(2)·sec)via 30 days incubation period to 17,40,and 56 pg/(cm2•sec)via that of 15 days.Obvious synchronous increase of LPDGT was not detected in overlying water,suggesting the intense assimilation of dissolve reactive P via root over time.PO measurement indicated that O_(2)concentration around the rhizosphere remarkably increased and radially diffused into deeper sediment until 100%saturation along with the root stretch downwards.NMT detection of roots showed the obvious O_(2)inflow into root tissue with the uppermost flux of 30 pmol/(cm2•sec)from surroundings via aerenchyma on different treatment conditions.Different from previous reports,gradually saturating O_(2)concentrations around the rhizosphere was principally driven by O_(2)penetration through interspace attributing to root stretch downward rather than root O_(2)leakage.Increased O_(2)concentrations in deep sediment over time finally induced the oxidization of labile Fe(II)into Fe(III)bound P and local P immobilization.