Chitosan-stavudine (d4T) conjugate with a succinic spacer was synthesized via carbodiimide coupling reaction and structurally characterized. In order to nanosize it for improving its therapeutic properties, the chit...Chitosan-stavudine (d4T) conjugate with a succinic spacer was synthesized via carbodiimide coupling reaction and structurally characterized. In order to nanosize it for improving its therapeutic properties, the chitosan-5'-O-succinyl-d4T conjugate was crosslinked with sodium tripolyphosphate (TPP) to obtain the chitosan-d4T conjugate nano-prodrug. The morphologies of chitosan-d4T conjugate nanoparticles were observed by transmission electron microscopy (TEM), and their zeta potential, particle size, and polydispersity (size distribution) were measured by the dynamic light scattering (DLS) techniques. In vitro drug release studies at pH 1.1 and pH 7.4 indicate that the crosslinked chitosan-d4T conjugate nano-prodrug can prevent the coupled d4T from leaking out before entering the target viral reservoirs and provide a mild sustained release without the burst release. The results reveal that constructing conjugated chitosan nano-prodrugs may be a promising approach for improving the therapy efficacy of drugs in antiviral treatment.展开更多
Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constru...Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constructed a biomimetic self-assembly nano-prodrug system that enables the co-delivery of gefitinib(Gefi),ferrocene(Fc)and dihydroartemisinin(DHA)for the combined therapy of both ferroptosis and apoptosis.In the tumor microenvironment,this nano-prodrug is able to disassemble and trigger drug release under high levels of GSH.Interestingly,the released DHA can downregulate GPX4 level for the enhancement of intracellular ferroptosis from Fc,further executing tumor cell death with concomitant chemotherapy by Gefi.More importantly,this nano-prodrug provides highly homologous targeting ability by coating related cell membranes and exhibits outstanding inhibition of tumor growth and metastasis,as well as no noticeable side-effects during treatments.This simple small molecular self-assembled nano-prodrug provides a new reasonably designed modality for ferroptosis-combined chemotherapy.展开更多
To achieve highly selective synergistic chemotherapy attractive for clinical translation,the precise polymeric nano-prodrugs(PPD-NPs)were successfully constructed via the facile crosslinking reaction between p H-sensi...To achieve highly selective synergistic chemotherapy attractive for clinical translation,the precise polymeric nano-prodrugs(PPD-NPs)were successfully constructed via the facile crosslinking reaction between p H-sensitive poly(ortho ester)s and reduction-sensitive small molecule synergistic prodrug(Pt(IV)-1).PPD-NPs endowed the defined structure and high drug loading of cisplatin and demethylcantharidin(DMC).Moreover,PPD-NPs exhibited steady long-term storage and circulation via the crosslinked structure,suitable negative potentials and low critical micelle concentration(CMC),improved selective tumour accumulation and cellular internalization via dynamic size transition and surficial amino protonation at tumoural extracellular p H,promoted efficient disintegration and drug release at tumoural intracellular p H/glutathione,and enhanced cytotoxicity via the synergistic effect between cisplatin and DMC with the feed ratio of 1:2,achieving significant tumour suppression while decreasing the side effects.Thus,the dynamic crosslinked polymeric nano-prodrugs exhibit tremendous potential for clinically targeted synergistic cancer therapy.展开更多
Currently,the dynamic erosive small molecule nano-prodrug is of great demand for oral chemotherapy,owing to its precise structure,high drug loading and improved oral bioavailability via overcoming various physiologic ...Currently,the dynamic erosive small molecule nano-prodrug is of great demand for oral chemotherapy,owing to its precise structure,high drug loading and improved oral bioavailability via overcoming various physiologic barriers in gastrointestinal tract,blood circulation and tumor tissues compared to other oral nanomedicines.Herein,this work highlights the successful development of pH-triggered dynamic erosive small molecule nano-prodrugs based on in vivo significant pH changes,which are synthesized via amide reaction between chlorambucil and star-shaped ortho esters.The precise nano-prodrugs exhibit extraordinarily high drug loading(68.16%),electric neutrality,strong hydrophobicity,and dynamic large-to-small size transition from gastrointestinal pH to tumoral pH.These favorable physicochemical properties can effectively facilitate gastrointestinal absorption,blood circulation stability,tumor accumulation,cellular uptake,and cytotoxicity,therefore achieving high oral relative bioavailability(358.72%)and significant tumor growth inhibition while decreasing side effects.Thus,this work may open a new avenue for robust oral chemotherapy attractive for clinical translation.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.20504018,20972014,20604010,20872010 and 20732004)the National Basic Research Program of China(No.2009CB930203)
文摘Chitosan-stavudine (d4T) conjugate with a succinic spacer was synthesized via carbodiimide coupling reaction and structurally characterized. In order to nanosize it for improving its therapeutic properties, the chitosan-5'-O-succinyl-d4T conjugate was crosslinked with sodium tripolyphosphate (TPP) to obtain the chitosan-d4T conjugate nano-prodrug. The morphologies of chitosan-d4T conjugate nanoparticles were observed by transmission electron microscopy (TEM), and their zeta potential, particle size, and polydispersity (size distribution) were measured by the dynamic light scattering (DLS) techniques. In vitro drug release studies at pH 1.1 and pH 7.4 indicate that the crosslinked chitosan-d4T conjugate nano-prodrug can prevent the coupled d4T from leaking out before entering the target viral reservoirs and provide a mild sustained release without the burst release. The results reveal that constructing conjugated chitosan nano-prodrugs may be a promising approach for improving the therapy efficacy of drugs in antiviral treatment.
基金financial supports from National Natural Science Foundation of China(32000992,21977081,32101124)the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholar(LR23C100001)+1 种基金Wenzhou Medical University(KYYW201901)Zhejiang Qianjiang Talent Plan(QJD20020224)
文摘Ferroptosis has emerged as a potent form of no-apoptotic cell death that offers a promising alternative to avoid the chemoresistance of apoptotic pathways and serves as a vulnerability of cancer.Herein,we have constructed a biomimetic self-assembly nano-prodrug system that enables the co-delivery of gefitinib(Gefi),ferrocene(Fc)and dihydroartemisinin(DHA)for the combined therapy of both ferroptosis and apoptosis.In the tumor microenvironment,this nano-prodrug is able to disassemble and trigger drug release under high levels of GSH.Interestingly,the released DHA can downregulate GPX4 level for the enhancement of intracellular ferroptosis from Fc,further executing tumor cell death with concomitant chemotherapy by Gefi.More importantly,this nano-prodrug provides highly homologous targeting ability by coating related cell membranes and exhibits outstanding inhibition of tumor growth and metastasis,as well as no noticeable side-effects during treatments.This simple small molecular self-assembled nano-prodrug provides a new reasonably designed modality for ferroptosis-combined chemotherapy.
基金supported by the Anhui Engineering Technology Research center of Biochemical Pharmaceutical(Bengbu Medical College)the National Natural Science Foundation of China(No.51803001)the Research Foundation of Education Department of Anhui Province of China(No.KJ2018ZD003,KJ2018A0006 and KJ2019A0015)the Academic and Technology Introduction Project of Anhui University(AU02303203)。
文摘To achieve highly selective synergistic chemotherapy attractive for clinical translation,the precise polymeric nano-prodrugs(PPD-NPs)were successfully constructed via the facile crosslinking reaction between p H-sensitive poly(ortho ester)s and reduction-sensitive small molecule synergistic prodrug(Pt(IV)-1).PPD-NPs endowed the defined structure and high drug loading of cisplatin and demethylcantharidin(DMC).Moreover,PPD-NPs exhibited steady long-term storage and circulation via the crosslinked structure,suitable negative potentials and low critical micelle concentration(CMC),improved selective tumour accumulation and cellular internalization via dynamic size transition and surficial amino protonation at tumoural extracellular p H,promoted efficient disintegration and drug release at tumoural intracellular p H/glutathione,and enhanced cytotoxicity via the synergistic effect between cisplatin and DMC with the feed ratio of 1:2,achieving significant tumour suppression while decreasing the side effects.Thus,the dynamic crosslinked polymeric nano-prodrugs exhibit tremendous potential for clinically targeted synergistic cancer therapy.
基金supported by the Anhui Engineering Technology Research Center of Biochemical Pharmaceutical(Bengbu Medical College)the National Natural Science Foundation of China(No.51803001)+1 种基金the Research Foundation of Education Department of Anhui Province of China(No.KJ2018ZD003,KJ2018A0006 and KJ2019A0015)the Academic and Technology Introduction Project of Anhui University(AU02303203).
文摘Currently,the dynamic erosive small molecule nano-prodrug is of great demand for oral chemotherapy,owing to its precise structure,high drug loading and improved oral bioavailability via overcoming various physiologic barriers in gastrointestinal tract,blood circulation and tumor tissues compared to other oral nanomedicines.Herein,this work highlights the successful development of pH-triggered dynamic erosive small molecule nano-prodrugs based on in vivo significant pH changes,which are synthesized via amide reaction between chlorambucil and star-shaped ortho esters.The precise nano-prodrugs exhibit extraordinarily high drug loading(68.16%),electric neutrality,strong hydrophobicity,and dynamic large-to-small size transition from gastrointestinal pH to tumoral pH.These favorable physicochemical properties can effectively facilitate gastrointestinal absorption,blood circulation stability,tumor accumulation,cellular uptake,and cytotoxicity,therefore achieving high oral relative bioavailability(358.72%)and significant tumor growth inhibition while decreasing side effects.Thus,this work may open a new avenue for robust oral chemotherapy attractive for clinical translation.