To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu allo...To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu alloy was studied.The results show that the reinforcements(β-Si andθ-CuAl_(2)phases)of the Al-Si-Cu alloy are dispersed in theα-Al matrix phase with finer phase size after the treatment.The processed samples exhibit grain sizes in the submicron or even nanometer range,which effectively improves the mechanical properties of the material.The hardness and strength of the deformed alloy are both significantly raised to 268 HV and 390.04 MPa by 10 turns HPT process,and the fracture morphology shows that the material gradually transits from brittle to plastic before and after deformation.The elements interdiffusion at the interface between the phases has also been effectively enhanced.In addition,it is found that the severe plastic deformation at room temperature induces a ternary eutectic reaction,resulting in the formation of ternary Al+Si+CuAl_(2)eutectic.展开更多
The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the micro...The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.展开更多
[Objective] The aim was to observe the antibacterial effect of nano-scale Titanium dioxide on parasitic bacterium of Nanfeng Citrus in storage period.[Method] Nano-scale Titanium dioxide was prepared by dibutyl phthal...[Objective] The aim was to observe the antibacterial effect of nano-scale Titanium dioxide on parasitic bacterium of Nanfeng Citrus in storage period.[Method] Nano-scale Titanium dioxide was prepared by dibutyl phthalate through sol-gel method under anhydrous conditions,and orthogonal experiment was used to determine optimum conditions for nano-scale Titanium dioxide preparation,and structure characterization of nano-scale Titanium dioxide was carried out by X-Ray diffractometer.Oxford cup method was used to explore inhibition effect of nano-scale Titanium dioxide suspension on the activity of normal parasitic bacterium of Nanfeng Citrus.Simultaneously,the empirical preservation test was carried out.[Result] The average diameter of nano-scale Titanium dioxide powder attained to 14.6 nm,actual average yield could reach 90.83% with RSD(Relative Standard Deviation)of 0.86%.[Conclusion] Nano-scale Titanium dioxide had good antibacterial effect on the parasitic bacterium of Nanfeng Citrus in storage period.展开更多
There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most ...There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most challenging problems.In this paper,we present a visual object tracking and servoing control system utilizing a tailor-made 38 g nano-scale quadrotor.A lightweight visual module is integrated to enable object tracking capabilities,and a micro positioning deck is mounted to provide accurate pose estimation.In order to be robust against object appearance variations,a novel object tracking algorithm,denoted by RMCTer,is proposed,which integrates a powerful short-term tracking module and an efficient long-term processing module.In particular,the long-term processing module can provide additional object information and modify the short-term tracking model in a timely manner.Furthermore,a positionbased visual servoing control method is proposed for the quadrotor,where an adaptive tracking controller is designed by leveraging backstepping and adaptive techniques.Stable and accurate object tracking is achieved even under disturbances.Experimental results are presented to demonstrate the high accuracy and stability of the whole tracking system.展开更多
Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the at...Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.展开更多
By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensiona...By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensional nuclear magnetic resonance (2D NMR), the Gulong shale oil in the Songliao Basin was investigated with respect to formation model, pore structure and accumulation mechanism. First, in the Gulong shale, there are a large number of pico-algae, nano-algae and dinoflagellates, which were formed in brackish water environment and constituted the hydrogen-rich oil source materials of shale. Second, most of the oil-generating materials of the Qingshankou Formation shale exist in the form of organo-clay complex. During organic matter thermal evolution, clay minerals had double effects of suppression and catalytic hydrogenation, which expanded shale oil window and increased light hydrocarbon yield. Third, the formation of storage space in the Gulong Shale was related to dissolution and hydrocarbon generation. With the diagenesis, micro-/nano-pores increased, pore diameter decreased and more bedding fractures appeared, which jointly gave rise to the unique reservoir with dual media (i.e. nano-scale pores and micro-scale bedding fractures) in the Gulong shale. Fourth, the micro-/nano-scale oil storage unit in the Gulong shale exhibits independent oil/gas occurrence phase, and shows that all-size pores contain oils, which occur in condensate state in micropores or in oil-gas two phase (or liquid) state in macropores/mesopores. The understanding about Gulong shale oil formation and accumulation mechanism has theoretical and practical significance for advancing continental shale oil exploration in China.展开更多
The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is...The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is an important factor affecting the performance and reliability of MEMS. The model of the nano-scale interracial friction behavior between two kinds of materials was presented based on the Newton' s equations of motion. The Morse potential function was selected for the model. The improved Verlet algorithm was employed to resolve the model, the atom trajectories and the law of the interfacial friction behavior. Comparisons with experimental data in other paper confirm the validity of the model. Using the model it is possible to simulate or evaluate the importance of different factors for designing of the nano-scale interfacial friction behavior between two kinds of materials in MEMS.展开更多
Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous ...Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous materials,which significantly affects the performance of diamond-based devices.Herein,combing experiments and theoretical calculations,taking diamond–iron(Fe)interface as a prototype,the counter-diffusion mechanism of Fe/carbon atoms has been established.Surprisingly,it is identified that Fe and diamond first form a coherent interface,and then Fe atoms diffuse into diamond and prefer the carbon vacancies sites.Meanwhile,the relaxed carbon atoms diffuse into the Fe lattice,forming Fe_(3)C.Moreover,graphite is observed at the Fe_(3)C surface when Fe_(3)C is over-saturated by carbon atoms.The present findings are expected to offer new insights into the atomic mechanism for diamondferrous material's interfacial reactions,benefiting diamond-based device applications.展开更多
With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO 2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge...With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO 2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge-oxygen model is used to construct the interface of different sizes, and the finite size effect of the interface between fine electronic structure silicon and silicon dioxide is studied. Then, the influence of the finite size effect on the electrical properties of nanotransistors is calculated by using the first principle. Theoretical calculation results demonstrate that the bond length of Si-Si and Si-O shows a saturate tendency when the size increases, while the absorption capacity of visible light and the barrier of the interface increase with the decrease of size. Finally, the results of two tunneling current models show that the finite size effect of Si(001)/SiO 2 interface can lead to a larger change in the gate leakage current of nano-scale devices, and the transition region and image potential, which play an important role in the calculation of interface characteristics of large-scale devices, show different sensitivities to the finite size effect. Therefore, the finite size effect of the interface on the gate leakage current cannot be ignored in nano-scale devices.展开更多
The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron or...The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.展开更多
Regulation of iron homeostasis in maize remains unclear,despite the known roles of FER-Like Fe deficiency-induced transcription factor(FIT)in Arabidopsis and rice.ZmFIT,like At FIT and Os FIT,interacts with iron-relat...Regulation of iron homeostasis in maize remains unclear,despite the known roles of FER-Like Fe deficiency-induced transcription factor(FIT)in Arabidopsis and rice.ZmFIT,like At FIT and Os FIT,interacts with iron-related transcription factors 2(ZmIRO2).Here,we investigate the involvement of ZmFIT in iron homeostasis.Mutant ZmFIT lines exhibiting symptoms of Fe deficiency had reduced shoot iron content.Transcriptome analysis revealed downregulation of Fe deficiency-responsive genes in the roots of a Zmfit mutant.ZmFIT facilitates the nuclear translocation of ZmIRO2 to activate transcription of downstream genes under Fe-deficient conditions.Our findings suggest that ZmFIT,by interaction with ZmIRO2,mediates iron homeostasis in maize.Notably,the binding and activation mechanisms of ZmFIT resemble those in Arabidopsis but differ from those in rice,whereas downstream genes regulated by ZmFIT show similarities to rice but differences from Arabidopsis.In brief,ZmFIT,orthgologs of Os FIT and At FIT in rice and maize,respectively,regulates iron uptake and homeostasis in maize,but with variations.展开更多
A novel nano-scale alignment technique based on Moiré signal for room-temperature imprint lithography in the submicron realm is proposed. The Moiré signals generated by a pair of quadruple gratings on two te...A novel nano-scale alignment technique based on Moiré signal for room-temperature imprint lithography in the submicron realm is proposed. The Moiré signals generated by a pair of quadruple gratings on two templates respectively are optically projected onto a photodetector array, then the detected Moiré signals are used to estimate the alignment errors in x and y directions. The experiment result indicates that complex differential Moiré signal is sensitive to relative displacement of the pair of marks than each single Moiré signal, and the alignment resolutions obtained in x and y directions are ±20nm(3σ) and ±24nm(3σ). They can meet the requirement of alignment accuracy for submicron imprint lithography.展开更多
BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality ...BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients.METHODS Web of Science,Embase,PubMed,and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients.Two reviewers independently assessed,selected,and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients.Data on serum iron or ferritin levels,mortality,and demographics were extracted.RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion.We observed a slight negative effect of serum ferritin on mortality in the United States population[relative risk(RR)1.002;95%CI:1.002-1.004].In patients with sepsis,serum iron had a significant negative effect on mortality(RR=1.567;95%CI:1.208-1.925).CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis.Furthermore,it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population.展开更多
This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers....This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.A total of 7201-d-old yellow-feathered maleb roilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg^(-1))supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg^(-1)in the form of FeSO_(4)·7H_(2)O.Compared with the birds in the control group,birds supplemented with 20mg Fe kg^(-1)had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg^(-1)significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20mg Fe kg^(-1).Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P?0.05)as dietary Feincreased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P?0.05)or quadratically(P?0.05).Compared with the supplementation of 20 mg Fe kg^(-1),the supplementation of640 mg Fe kg^(-1)or higher increased(P?0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg^(-1)reduced(P?0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg^(-1)or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein.展开更多
The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the ...The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design.展开更多
Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrha...Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrhagic area.However,the regulato ry mechanism of histone deacetylases in central post-stroke pain remains unclea r.Here,we show that iron overload leads to an increase in histone deacetylase 2expression in damaged ventral posterolateral nucleus neurons.Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium(Kv)channel subunit gene in a rat model of central post-stroke pain,thereby increasing Kcna2expression and relieving central pain.However,in the absence of nerve injury,increasing histone deacetylase 2 expression decreased Kcna2expression,decreased Kv current,increased the excitability of neurons in the ventral posterolateral nucleus area,and led to neuropathic pain symptoms.Moreover,treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage,reversed histone deacetylase 2 upregulation and Kv1.2 downregulation,and alleviated mechanical hypersensitivity in central post-stroke pain rats.These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation,mediated by iron overload,are important factors in central post-stroke pain pathogenesis and co uld se rve as new to rgets for central poststroke pain treatment.展开更多
In this paper, molecular dynamics (MD) simulations of nano-sized wiredrawing are performed. The wiredrawing is a traditional plastic working method, but there has not been any insight to develop it in a nano-sized sca...In this paper, molecular dynamics (MD) simulations of nano-sized wiredrawing are performed. The wiredrawing is a traditional plastic working method, but there has not been any insight to develop it in a nano-sized scale. Therefore, to materialize the concept of the nano-sized wiredrawing, a numerical modelling is pursued at first in this paper, and the interatomic potential, a crystalline orientation, the drawing condition realized by a die geometry are thoroughly investigated. In particular, to reduce the friction between a wire and a die, a simple friction model for the MD analysis is newly proposed, where the interatomic interaction is adequately modified by a single factor ω. Then, the fruitful results are obtained by using ω = 0.1. We checked the availability of such nano-sized MD simulation by constructing a two-dimensional wiredrawing model, at first. The analysis of atomic stress during drawing is also assessed. It is useful to use invariant of the atomic stress tensor, such as hydrostatic stress (average stress, σm) or von Mises equivalent stress (σeq). The former is related to the phase transformation from the body-centered-cubic (bcc) structure to the face-centered-cubic (fcc) one, which is found in the present MD simulation. It is observed that an initial α-iron crystal with bcc structure changes partially into the fcc phase. It is recognized that the phase transformation is caused by the positive hydrostatic stress values, which is occurring especially inside the die region. We observed that a lot of dislocation core structures occur in wiredrawing process and their existence and evolution are well related to the equivalent stress values.展开更多
Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions...Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.展开更多
Background Boars fed a mixed form of inorganic and organic iron in excess of the NRC recommended levels still develop anemia,which suggested that the current level and form of iron supplementation in boar diets may be...Background Boars fed a mixed form of inorganic and organic iron in excess of the NRC recommended levels still develop anemia,which suggested that the current level and form of iron supplementation in boar diets may be inappropriate.Therefore,56 healthy Topeka E line boars aged 15–21 months were randomly divided into 5 groups:basal diet supplemented with 96 mg/kg ferrous sulfate(FeSO_(4))and 54 mg/kg glycine chelated iron(Gly-Fe,control);80 mg/kg or 115 mg/kg Gly-Fe;80 mg/kg or 115 mg/kg methionine hydroxyl analogue chelated iron(MHA-Fe,from CalimetFe)for 16 weeks.The effects of dietary iron supplementation with different sources and levels on semen quality in boars were investigated.Results 1)Serum Fe and hemoglobin concentrations were not affected by reduced dietary iron levels in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups compared with the control group(P>0.05).2)Serum interleukin-6(IL-6)and sperm malondialdehyde(MDA)levels in the 80 mg/kg or 115 mg/kg MHA-Fe groups were lower than those in the control group(P<0.05),and higher serum superoxide dismutase levels and lower MDA levels in the 115 mg/kg MHA-Fe group(P<0.05).3)Boars in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups had lower serum hepcidin(P<0.01),ferritin(P<0.05),and transferrin receptor(P<0.01)concentrations,and boars in the 115 mg/kg MHA-Fe group had higher seminal plasma Fe concentrations compared with the control group.4)Boars in the 80 mg/kg and 115 mg/kg MHA-Fe groups had lower abnormal sperm rate and in situ oscillating sperm ratio compared to the control group at weeks 12 and/or 16 of the trial.However,the effect of Gly-Fe on improving semen quality in boars was not evident.5)Serum IL-6 level was positively correlated with hepcidin concentration(P<0.05),which in turn was significantly positively correlated with abnormal sperm rate(P<0.05).Furthermore,significant correlations were also found between indicators of iron status and oxidative stress and semen quality parameters.Conclusions Dietary supplementation with 80 mg/kg or 115 mg/kg MHA-Fe did not induce iron deficiency,but rather reduced serum inflammatory levels and hepcidin concentration,alleviated oxidative stress,increased body iron utilization,and improved semen quality in adult boars.展开更多
Background: Emerging evidence has recognized that anemia and iron deficiency are recurrent comorbidities in chronic heart failure (HF) and several trials have established that iron administration improves myocardial a...Background: Emerging evidence has recognized that anemia and iron deficiency are recurrent comorbidities in chronic heart failure (HF) and several trials have established that iron administration improves myocardial asset and clinical scenario in HF. Purpose: Recent acquisitions suggest that iron deficiency represents a concrete bias in the pathogenetic mechanism of chronic HF, so we have investigated the putative role of the hepcidin/ferroportin axis in the cardiovascular setting to advocate novel pharmacological and clinical approaches. Methods: Here, after an excursus on iron metabolism, we first reviewed the ongoing studies on novel iron targeted compounds. Then, we summarize large clinical interventional studies conducted on patient suffering from iron deficiency and HF which have tested the effects of drugging iron regard QoL, hospitalizations and cardiovascular death. Results: Novel compounds such as hepcidin agonist (PTG 300), synthetic human hepcidin (LJPC-401) and anti FPN (Vamifeport) are ongoing in iron overloaded patients, while the hepcidin blocker (PRS-080) is under investigation in anemic patients. Noteworthy, novel insights could arise from the results of a Phase IV interventional study regarding the modification of hepcidin pathway in a large cohort of HF patients (n = 1992) by sodium glucose cotransporter 2 inhibitors. To date, several studies highlight the beneficial effect of iron administration in cardiovascular setting and latest evidences consider hepcidin level as a novel biomarker of cardiac injury and atherosclerosis. Conclusions: We advocate that data from ongoing studies will suggest novel iron targeted therapies for diagnosis, prognosis and therapy transferable in selected heart failed patients.展开更多
基金Funded by the National Natural Science Foundation of China(No.51905215)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_1233)+1 种基金Major Scientific and Technological Innovation Project of Shandong Province of China(No.2019JZZY020111)the National College Students Innovation and Entrepreneurship Training Program of China(No.CX2022415)。
文摘To improve the comprehensive mechanical properties of Al-Si-Cu alloy,it was treated by a high-pressure torsion process,and the effect of the deformation degree on the microstructure and properties of the Al-Si-Cu alloy was studied.The results show that the reinforcements(β-Si andθ-CuAl_(2)phases)of the Al-Si-Cu alloy are dispersed in theα-Al matrix phase with finer phase size after the treatment.The processed samples exhibit grain sizes in the submicron or even nanometer range,which effectively improves the mechanical properties of the material.The hardness and strength of the deformed alloy are both significantly raised to 268 HV and 390.04 MPa by 10 turns HPT process,and the fracture morphology shows that the material gradually transits from brittle to plastic before and after deformation.The elements interdiffusion at the interface between the phases has also been effectively enhanced.In addition,it is found that the severe plastic deformation at room temperature induces a ternary eutectic reaction,resulting in the formation of ternary Al+Si+CuAl_(2)eutectic.
基金financially supported by the National Science Foundation of China(Nos.51974212 and 52274316)the China Baowu Low Carbon Metallurgy Innovation Foundation(No.BWLCF202116)+1 种基金the Science and Technology Major Project of Wuhan(No.2023020302020572)the Foundation of Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education(No.FMRUlab23-04)。
文摘The utilization of iron coke provides a green pathway for low-carbon ironmaking.To uncover the influence mechanism of iron ore on the behavior and kinetics of iron coke gasification,the effect of iron ore on the microstructure of iron coke was investigated.Furthermore,a comparative study of the gasification reactions between iron coke and coke was conducted through non-isothermal thermogravimetric method.The findings indicate that compared to coke,iron coke exhibits an augmentation in micropores and specific surface area,and the micropores further extend and interconnect.This provides more adsorption sites for CO_(2) molecules during the gasification process,resulting in a reduction in the initial gasification temperature of iron coke.Accelerating the heating rate in non-isothermal gasification can enhance the reactivity of iron coke.The metallic iron reduced from iron ore is embedded in the carbon matrix,reducing the orderliness of the carbon structure,which is primarily responsible for the heightened reactivity of the carbon atoms.The kinetic study indicates that the random pore model can effectively represent the gasification process of iron coke due to its rich pore structure.Moreover,as the proportion of iron ore increases,the activation energy for the carbon gasification gradually decreases,from 246.2 kJ/mol for coke to 192.5 kJ/mol for iron coke 15wt%.
文摘[Objective] The aim was to observe the antibacterial effect of nano-scale Titanium dioxide on parasitic bacterium of Nanfeng Citrus in storage period.[Method] Nano-scale Titanium dioxide was prepared by dibutyl phthalate through sol-gel method under anhydrous conditions,and orthogonal experiment was used to determine optimum conditions for nano-scale Titanium dioxide preparation,and structure characterization of nano-scale Titanium dioxide was carried out by X-Ray diffractometer.Oxford cup method was used to explore inhibition effect of nano-scale Titanium dioxide suspension on the activity of normal parasitic bacterium of Nanfeng Citrus.Simultaneously,the empirical preservation test was carried out.[Result] The average diameter of nano-scale Titanium dioxide powder attained to 14.6 nm,actual average yield could reach 90.83% with RSD(Relative Standard Deviation)of 0.86%.[Conclusion] Nano-scale Titanium dioxide had good antibacterial effect on the parasitic bacterium of Nanfeng Citrus in storage period.
基金supported in part by the Institute for Guo Qiang of Tsinghua University(2019GQG1023)in part by Graduate Education and Teaching Reform Project of Tsinghua University(202007J007)+1 种基金in part by National Natural Science Foundation of China(U19B2029,62073028,61803222)in part by the Independent Research Program of Tsinghua University(2018Z05JDX002)。
文摘There are two main trends in the development of unmanned aerial vehicle(UAV)technologies:miniaturization and intellectualization,in which realizing object tracking capabilities for a nano-scale UAV is one of the most challenging problems.In this paper,we present a visual object tracking and servoing control system utilizing a tailor-made 38 g nano-scale quadrotor.A lightweight visual module is integrated to enable object tracking capabilities,and a micro positioning deck is mounted to provide accurate pose estimation.In order to be robust against object appearance variations,a novel object tracking algorithm,denoted by RMCTer,is proposed,which integrates a powerful short-term tracking module and an efficient long-term processing module.In particular,the long-term processing module can provide additional object information and modify the short-term tracking model in a timely manner.Furthermore,a positionbased visual servoing control method is proposed for the quadrotor,where an adaptive tracking controller is designed by leveraging backstepping and adaptive techniques.Stable and accurate object tracking is achieved even under disturbances.Experimental results are presented to demonstrate the high accuracy and stability of the whole tracking system.
文摘Nanohairs, which can be found on the epidermis of Tokay gecko's toes, contribute to the adhesion by means of van der Waals force, capillary force, etc. This structure has inspired many researchers to fabricate the attachable nano-scale structures. However, the efficiency of artificial nano-scale structures is not reliable sufficiently. Moreover, the mechanical parameters related to the nano-hair attachment are not yet revealed qualitatively. The mechanical parameters which have influence on the ability of adhesive nano-hairs were investigated through numerical simulation in which only van der Waals force was considered. For the numerical analysis, finite element method was utilized and van der Waals force, assumed as 12-6 Lennard-Jones potential, was implemented as the body force term in the finite element formulation.
基金Supported by the Central Guiding Local Science and Technology Development Special Project(ZY20B13)。
文摘By conducting experimental analyses, including thermal pyrolysis, micro-/nano-CT, argon-ion polishing field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscopy (CLSM), and two-dimensional nuclear magnetic resonance (2D NMR), the Gulong shale oil in the Songliao Basin was investigated with respect to formation model, pore structure and accumulation mechanism. First, in the Gulong shale, there are a large number of pico-algae, nano-algae and dinoflagellates, which were formed in brackish water environment and constituted the hydrogen-rich oil source materials of shale. Second, most of the oil-generating materials of the Qingshankou Formation shale exist in the form of organo-clay complex. During organic matter thermal evolution, clay minerals had double effects of suppression and catalytic hydrogenation, which expanded shale oil window and increased light hydrocarbon yield. Third, the formation of storage space in the Gulong Shale was related to dissolution and hydrocarbon generation. With the diagenesis, micro-/nano-pores increased, pore diameter decreased and more bedding fractures appeared, which jointly gave rise to the unique reservoir with dual media (i.e. nano-scale pores and micro-scale bedding fractures) in the Gulong shale. Fourth, the micro-/nano-scale oil storage unit in the Gulong shale exhibits independent oil/gas occurrence phase, and shows that all-size pores contain oils, which occur in condensate state in micropores or in oil-gas two phase (or liquid) state in macropores/mesopores. The understanding about Gulong shale oil formation and accumulation mechanism has theoretical and practical significance for advancing continental shale oil exploration in China.
基金Funded by Natural Science Foundation of Guangxi Province ofChina (No.0339037) ,the Support Programfor Young and Middle-aged Disciplinary Leaders in Guangxi Higher Education Institution,the Science Foundationfor Qualified Personnel of Jiangsu University(04JDG027) ,andthe Innovative Science Foundation of Jiangsu Uni-versity
文摘The aim of this article was to provide a systematic method to perform molecular dynamics simulotion or evaluation for nano-scale interfacial friction behavior between two kinds of materials in MEMS design. Friction is an important factor affecting the performance and reliability of MEMS. The model of the nano-scale interracial friction behavior between two kinds of materials was presented based on the Newton' s equations of motion. The Morse potential function was selected for the model. The improved Verlet algorithm was employed to resolve the model, the atom trajectories and the law of the interfacial friction behavior. Comparisons with experimental data in other paper confirm the validity of the model. Using the model it is possible to simulate or evaluate the importance of different factors for designing of the nano-scale interfacial friction behavior between two kinds of materials in MEMS.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274371,62271450,U21A2070,21805247,12074345)Cross-Disciplinary Innovative Research Group Project of Henan Province(Grant No.232300421004).
文摘Diamond,with ultrahigh hardness,high wear resistance,high thermal conductivity,and so forth,has attracted worldwide attention.However,researchers found emergent reactions at the interfaces between diamond and ferrous materials,which significantly affects the performance of diamond-based devices.Herein,combing experiments and theoretical calculations,taking diamond–iron(Fe)interface as a prototype,the counter-diffusion mechanism of Fe/carbon atoms has been established.Surprisingly,it is identified that Fe and diamond first form a coherent interface,and then Fe atoms diffuse into diamond and prefer the carbon vacancies sites.Meanwhile,the relaxed carbon atoms diffuse into the Fe lattice,forming Fe_(3)C.Moreover,graphite is observed at the Fe_(3)C surface when Fe_(3)C is over-saturated by carbon atoms.The present findings are expected to offer new insights into the atomic mechanism for diamondferrous material's interfacial reactions,benefiting diamond-based device applications.
基金The National Natural Science Foundation of China(No.61774014)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYZZ15_0331)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.19KJB510060)
文摘With the device size gradually approaching the physical limit, the small changes of the Si(001)/SiO 2 interface in silicon-based devices may have a great impact on the device characteristics. Based on this, the bridge-oxygen model is used to construct the interface of different sizes, and the finite size effect of the interface between fine electronic structure silicon and silicon dioxide is studied. Then, the influence of the finite size effect on the electrical properties of nanotransistors is calculated by using the first principle. Theoretical calculation results demonstrate that the bond length of Si-Si and Si-O shows a saturate tendency when the size increases, while the absorption capacity of visible light and the barrier of the interface increase with the decrease of size. Finally, the results of two tunneling current models show that the finite size effect of Si(001)/SiO 2 interface can lead to a larger change in the gate leakage current of nano-scale devices, and the transition region and image potential, which play an important role in the calculation of interface characteristics of large-scale devices, show different sensitivities to the finite size effect. Therefore, the finite size effect of the interface on the gate leakage current cannot be ignored in nano-scale devices.
基金support of Shanxi Province Major Science and Technology Projects,China (No.20191101002).
文摘The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process.In this study,the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments.Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’diffusion and phase transformation during the roasting process.The results indicated that limestone decomposed into calcium oxide,and magnetite was oxidized to hematite at the early stage of preheating.With the increase in roasting temperature,the diffusion rate of Fe and Ca was obviously accelerated,while the diffusion rate of Si was relatively slow.The order of magnitude of interdiffusion coefficient of Fe_(2)O_(3)-CaO diffusion couple was 10^(−10) m^(2)·s^(−1) at a roasting temperature of 1200℃for 9 h.Ca_(2)Fe_(2)O_(5) was the initial product in the Fe_(2)O_(3)-CaO-SiO_(2) diffusion interface,and then Ca_(2)Fe_(2)O_(5) continued to react with Fe_(2)O_(3) to form CaFe_(2)O_(4).With the expansion of the diffusion region,the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO_(2) into CaFe_(2)O_(4),which can strengthen the consolidation of fluxed pellets.Furthermore,andradite would be formed around a small part of quartz particles,which is also conducive to the consolidation of fluxed pellets.In addition,the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
基金supported by the National Key Research and Development Program of China (2021YFF1000304)the National Natural Science Foundation of China (32001550)the National Key Research and Development Program of China (2021YFD1200700,2023YFD1202903)。
文摘Regulation of iron homeostasis in maize remains unclear,despite the known roles of FER-Like Fe deficiency-induced transcription factor(FIT)in Arabidopsis and rice.ZmFIT,like At FIT and Os FIT,interacts with iron-related transcription factors 2(ZmIRO2).Here,we investigate the involvement of ZmFIT in iron homeostasis.Mutant ZmFIT lines exhibiting symptoms of Fe deficiency had reduced shoot iron content.Transcriptome analysis revealed downregulation of Fe deficiency-responsive genes in the roots of a Zmfit mutant.ZmFIT facilitates the nuclear translocation of ZmIRO2 to activate transcription of downstream genes under Fe-deficient conditions.Our findings suggest that ZmFIT,by interaction with ZmIRO2,mediates iron homeostasis in maize.Notably,the binding and activation mechanisms of ZmFIT resemble those in Arabidopsis but differ from those in rice,whereas downstream genes regulated by ZmFIT show similarities to rice but differences from Arabidopsis.In brief,ZmFIT,orthgologs of Os FIT and At FIT in rice and maize,respectively,regulates iron uptake and homeostasis in maize,but with variations.
文摘A novel nano-scale alignment technique based on Moiré signal for room-temperature imprint lithography in the submicron realm is proposed. The Moiré signals generated by a pair of quadruple gratings on two templates respectively are optically projected onto a photodetector array, then the detected Moiré signals are used to estimate the alignment errors in x and y directions. The experiment result indicates that complex differential Moiré signal is sensitive to relative displacement of the pair of marks than each single Moiré signal, and the alignment resolutions obtained in x and y directions are ±20nm(3σ) and ±24nm(3σ). They can meet the requirement of alignment accuracy for submicron imprint lithography.
基金Supported by The National Natural Science Foundation of China,No.82104989.
文摘BACKGROUND The effect of serum iron or ferritin parameters on mortality among critically ill patients is not well characterized.AIM To determine the association between serum iron or ferritin parameters and mortality among critically ill patients.METHODS Web of Science,Embase,PubMed,and Cochrane Library databases were searched for studies on serum iron or ferritin parameters and mortality among critically ill patients.Two reviewers independently assessed,selected,and abstracted data from studies reporting on serum iron or ferritin parameters and mortality among critically ill patients.Data on serum iron or ferritin levels,mortality,and demographics were extracted.RESULTS Nineteen studies comprising 125490 patients were eligible for inclusion.We observed a slight negative effect of serum ferritin on mortality in the United States population[relative risk(RR)1.002;95%CI:1.002-1.004].In patients with sepsis,serum iron had a significant negative effect on mortality(RR=1.567;95%CI:1.208-1.925).CONCLUSION This systematic review presents evidence of a negative correlation between serum iron levels and mortality among patients with sepsis.Furthermore,it reveals a minor yet adverse impact of serum ferritin on mortality among the United States population.
基金supported by the National Natural Science Foundation of China(31501977)the Sichuan Provincial Key R&D Project China(22ZDYF0194)the Double World-Class Project of Southwest Minzu University China(XM2023010)。
文摘This study aimed to investigate the dose-effect of iron on growth performance,antioxidant function.intestinal morphology,and mRNA expression of jejunal tight junction protein in 1-to21-d-old yellow-feathered broilers.A total of 7201-d-old yellow-feathered maleb roilers were allocated to 9 treatments with 8 replicate cages of 10 birds per cage.The dietary treatments were consisted of a basal diet(contained 79.6 mg Fe kg^(-1))supplemented with 0,20,40,60,80,160,320,640,and 1,280 mg Fe kg^(-1)in the form of FeSO_(4)·7H_(2)O.Compared with the birds in the control group,birds supplemented with 20mg Fe kg^(-1)had higher average daily gain(ADG)(P<0.0001).Adding 640 and 1,280 mg Fe kg^(-1)significantly decreased ADG(P<0.0001)and average daily feed intake(ADFI)(P<0.0001)compared with supplementation of 20mg Fe kg^(-1).Malondialdehyde(MDA)concentration in plasma and duodenum increased linearly(P<0.0001),but MDA concentration in liver and jejunum increased linearly(P<0.05)or quadratically(P<0.05)with increased dietary Fe concentration.The villus height(VH)in duodenum and jejunum,and the ratio of villus height to crypt depth(V/C)in duodenum decreased linearly(P?0.05)as dietary Feincreased.As dietary Fe increased,the jejunal relative mRNA abundance of claudin-1 decreased linearly(P=0.001),but the jejunal relative mRNA abundance of zona occludens-1(ZO-1)and occludin decreased linearly(P?0.05)or quadratically(P?0.05).Compared with the supplementation of 20 mg Fe kg^(-1),the supplementation of640 mg Fe kg^(-1)or higher increased(P?0.05)MDA concentrations in plasma,duodenum,and jejunum,decreased VH in the duodenum and jejunum,and the addition of 1,280 mg Fe kg^(-1)reduced(P?0.05)the jejunal tight junction protein(claudin-1,ZO-1,occludin)mRNA abundance.In summary,640 mg of supplemental Fe kg^(-1)or greater was associated with decreased growth performance,increased oxidative stress,disrupted intestinal morphology,and reduced mRNA expression of jejunal tight junction protein.
基金supported by the National Key R&D Program of China(No.2021YFB2402001)the Postgraduate Innovation and Entrepreneurship Practice Project of Anhui Province(No.2022cxcysj013)+2 种基金the China Postdoctoral Science Foundation(No.2022T150615)the Fundamental Research Funds for the Central Universities(No.WK5290000002)supported by Youth Innovation Promotion Association CAS(No.Y201768)。
文摘The safety valve is an important component to ensure the safe operation of lithium-ion batteries(LIBs).However,the effect of safety valve type on the thermal runaway(TR)and gas venting behavior of LIBs,as well as the TR hazard severity of LIBs,are not known.In this paper,the TR and gas venting behavior of three 100 A h lithium iron phosphate(LFP)batteries with different safety valves are investigated under overheating.Compared to previous studies,the main contribution of this work is in studying and evaluating the effect of gas venting behavior and TR hazard severity of LFP batteries with three safety valve types.Two significant results are obtained:(Ⅰ)the safety valve type dominates over gas venting pressure of battery during safety venting,the maximum gas venting pressure of LFP batteries with a round safety valve is 3320 Pa,which is one order of magnitude higher than other batteries with oval or cavity safety valve;(Ⅱ)the LFP battery with oval safety valve has the lowest TR hazard as shown by the TR hazard assessment model based on gray-fuzzy analytic hierarchy process.This study reveals the effect of safety valve type on TR and gas venting,providing a clear direction for the safety valve design.
基金supported by the National Natural Science Foundation of China,Nos.U2004106 (to WY),81971061 (to JC)the Key Scientific Research Project of Colleges and Universities in Henan Province,No.21A320039 (to WY)。
文摘Thalamic hemorrhage can lead to the development of central post-stroke pain.Changes in histone acetylation levels,which are regulated by histone deacetylases,affect the excitability of neurons surrounding the hemorrhagic area.However,the regulato ry mechanism of histone deacetylases in central post-stroke pain remains unclea r.Here,we show that iron overload leads to an increase in histone deacetylase 2expression in damaged ventral posterolateral nucleus neurons.Inhibiting this increase restored histone H3 acetylation in the Kcna2 promoter region of the voltage-dependent potassium(Kv)channel subunit gene in a rat model of central post-stroke pain,thereby increasing Kcna2expression and relieving central pain.However,in the absence of nerve injury,increasing histone deacetylase 2 expression decreased Kcna2expression,decreased Kv current,increased the excitability of neurons in the ventral posterolateral nucleus area,and led to neuropathic pain symptoms.Moreover,treatment with the iron chelator deferiprone effectively reduced iron overload in the ventral posterolateral nucleus after intracerebral hemorrhage,reversed histone deacetylase 2 upregulation and Kv1.2 downregulation,and alleviated mechanical hypersensitivity in central post-stroke pain rats.These results suggest that histone deacetylase 2 upregulation and Kv1.2 downregulation,mediated by iron overload,are important factors in central post-stroke pain pathogenesis and co uld se rve as new to rgets for central poststroke pain treatment.
文摘In this paper, molecular dynamics (MD) simulations of nano-sized wiredrawing are performed. The wiredrawing is a traditional plastic working method, but there has not been any insight to develop it in a nano-sized scale. Therefore, to materialize the concept of the nano-sized wiredrawing, a numerical modelling is pursued at first in this paper, and the interatomic potential, a crystalline orientation, the drawing condition realized by a die geometry are thoroughly investigated. In particular, to reduce the friction between a wire and a die, a simple friction model for the MD analysis is newly proposed, where the interatomic interaction is adequately modified by a single factor ω. Then, the fruitful results are obtained by using ω = 0.1. We checked the availability of such nano-sized MD simulation by constructing a two-dimensional wiredrawing model, at first. The analysis of atomic stress during drawing is also assessed. It is useful to use invariant of the atomic stress tensor, such as hydrostatic stress (average stress, σm) or von Mises equivalent stress (σeq). The former is related to the phase transformation from the body-centered-cubic (bcc) structure to the face-centered-cubic (fcc) one, which is found in the present MD simulation. It is observed that an initial α-iron crystal with bcc structure changes partially into the fcc phase. It is recognized that the phase transformation is caused by the positive hydrostatic stress values, which is occurring especially inside the die region. We observed that a lot of dislocation core structures occur in wiredrawing process and their existence and evolution are well related to the equivalent stress values.
基金supported by the National Key Research and Development Program of China(2019YFC1904800)the National Natural Science Foundation of China(72274105).
文摘Decarbonization and decontamination of the iron and steel industry(ISI),which contributes up to 15%to anthropogenic CO_(2) emissions(or carbon emissions)and significant proportions of air and water pollutant emissions in China,are challenged by the huge demand for steel.Carbon and pollutants often share common emission sources,indicating that emission reduction could be achieved synergistically.Here,we explored the inherent potential of measures to adjust feedstock composition and technological structure and to control the size of the ISI to achieve carbon emission reduction(CER)and pollution emission reduction(PER).We investigated five typical pollutants in this study,namely,petroleum hydrocarbon pollutants and chemical oxygen demand in wastewater,particulate matter,SO_(2),and NO_(x) in off gases,and examined synergies between CER and PER by employing cross elasticity for the period between 2022 and 2035.The results suggest that a reduction of 8.7%-11.7%in carbon emissions and 20%-31%in pollution emissions(except for particulate matter emissions)could be achieved by 2025 under a high steel scrap ratio(SSR)scenario.Here,the SSR and electric arc furnace(EAF)ratio serve critical roles in enhancing synergies between CER and PER(which vary with the type of pollutant).However,subject to a limited volume of steel scrap,a focused increase in the EAF ratio with neglection of the available supply of steel scrap to EAF facilities would lead to an increase carbon and pollution emissions.Although CER can be achieved through SSR and EAF ratio optimization,only when the crude steel production growth rate remains below 2.2%can these optimization measures maintain the emissions in 2030 at a similar level to that in 2021.Therefore,the synergistic effects between PER and CER should be considered when formulating a development route for the ISI in the future.
基金China Agriculture Research System(CARS-36)Major Project of Technical Innovation in Hubei Province(No.2022BBA0056)+1 种基金Dekon-Huazhong Agricultural University Project Co-operation AgreementSchool-Enterprise Cooperation Project-Micronutrient Nutrition and Mechanism of Breeding Pigs。
文摘Background Boars fed a mixed form of inorganic and organic iron in excess of the NRC recommended levels still develop anemia,which suggested that the current level and form of iron supplementation in boar diets may be inappropriate.Therefore,56 healthy Topeka E line boars aged 15–21 months were randomly divided into 5 groups:basal diet supplemented with 96 mg/kg ferrous sulfate(FeSO_(4))and 54 mg/kg glycine chelated iron(Gly-Fe,control);80 mg/kg or 115 mg/kg Gly-Fe;80 mg/kg or 115 mg/kg methionine hydroxyl analogue chelated iron(MHA-Fe,from CalimetFe)for 16 weeks.The effects of dietary iron supplementation with different sources and levels on semen quality in boars were investigated.Results 1)Serum Fe and hemoglobin concentrations were not affected by reduced dietary iron levels in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups compared with the control group(P>0.05).2)Serum interleukin-6(IL-6)and sperm malondialdehyde(MDA)levels in the 80 mg/kg or 115 mg/kg MHA-Fe groups were lower than those in the control group(P<0.05),and higher serum superoxide dismutase levels and lower MDA levels in the 115 mg/kg MHA-Fe group(P<0.05).3)Boars in the 80 mg/kg or 115 mg/kg Gly-Fe and MHA-Fe groups had lower serum hepcidin(P<0.01),ferritin(P<0.05),and transferrin receptor(P<0.01)concentrations,and boars in the 115 mg/kg MHA-Fe group had higher seminal plasma Fe concentrations compared with the control group.4)Boars in the 80 mg/kg and 115 mg/kg MHA-Fe groups had lower abnormal sperm rate and in situ oscillating sperm ratio compared to the control group at weeks 12 and/or 16 of the trial.However,the effect of Gly-Fe on improving semen quality in boars was not evident.5)Serum IL-6 level was positively correlated with hepcidin concentration(P<0.05),which in turn was significantly positively correlated with abnormal sperm rate(P<0.05).Furthermore,significant correlations were also found between indicators of iron status and oxidative stress and semen quality parameters.Conclusions Dietary supplementation with 80 mg/kg or 115 mg/kg MHA-Fe did not induce iron deficiency,but rather reduced serum inflammatory levels and hepcidin concentration,alleviated oxidative stress,increased body iron utilization,and improved semen quality in adult boars.
文摘Background: Emerging evidence has recognized that anemia and iron deficiency are recurrent comorbidities in chronic heart failure (HF) and several trials have established that iron administration improves myocardial asset and clinical scenario in HF. Purpose: Recent acquisitions suggest that iron deficiency represents a concrete bias in the pathogenetic mechanism of chronic HF, so we have investigated the putative role of the hepcidin/ferroportin axis in the cardiovascular setting to advocate novel pharmacological and clinical approaches. Methods: Here, after an excursus on iron metabolism, we first reviewed the ongoing studies on novel iron targeted compounds. Then, we summarize large clinical interventional studies conducted on patient suffering from iron deficiency and HF which have tested the effects of drugging iron regard QoL, hospitalizations and cardiovascular death. Results: Novel compounds such as hepcidin agonist (PTG 300), synthetic human hepcidin (LJPC-401) and anti FPN (Vamifeport) are ongoing in iron overloaded patients, while the hepcidin blocker (PRS-080) is under investigation in anemic patients. Noteworthy, novel insights could arise from the results of a Phase IV interventional study regarding the modification of hepcidin pathway in a large cohort of HF patients (n = 1992) by sodium glucose cotransporter 2 inhibitors. To date, several studies highlight the beneficial effect of iron administration in cardiovascular setting and latest evidences consider hepcidin level as a novel biomarker of cardiac injury and atherosclerosis. Conclusions: We advocate that data from ongoing studies will suggest novel iron targeted therapies for diagnosis, prognosis and therapy transferable in selected heart failed patients.