期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel 被引量:3
1
作者 Kamran Amini Amin Akhbarizadeh Sirus Javadpour 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第9期795-799,共5页
The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffracti... The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-fiat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples. 展开更多
关键词 cryogenic treatment tool steel nano-sized carbides wear resistance HARDNESS AUSTENITE
下载PDF
Deposition of nano-crystalline tungsten carbide powders from gaseous WO_(2)(OH)_(2) 被引量:1
2
作者 Markus Ostermann Roland Haubner 《Tungsten》 EI CSCD 2023年第1期136-144,共9页
Lower WC grain sizes in the nanometer range have positive effects on the properties of hardmetals(e.g.,hardness),but the established production processes of WC are limited to grain sizes of about 150 nm.To produce WC ... Lower WC grain sizes in the nanometer range have positive effects on the properties of hardmetals(e.g.,hardness),but the established production processes of WC are limited to grain sizes of about 150 nm.To produce WC powder with grain sizes in the lower nanometer range,an alternative WC production process based on the chemical vapor transport(CVT) reaction of WO_(3) and H_(2)O forming gaseous WO_(2)(OH)_(2) at about 1100 ℃,followed by a carburation reaction with H_(2)/CH_(4)-gas mixtures was investigated.The influences of different process parameters such as furnace temperature,humidity and gas flows were investigated to improve the process.With the right set of parameters the produced powder consisted mainly of agglomerated WC grains with a size of about 5 nm.Beside the common hexagonal WC phase,the cubic WC1-xphase was stabilized due to the small crystallite sizes.In addition,a thin layer of amorphous carbon was present on the powder surface due to the catalytic methane decomposition on the WC surface.The amount of oxidic and metallic residues in the product powder was minimized with the parameter optimization and the powder yield was increased up to about 50%.With further optimization of the process parameters and usage of improved flow breakers,the purity and yield of the product powder can be further improved.Since an application in the hardmetal section is not realistic at the moment,applications in the catalysis sector could be considered due to the small grain size and good catalytic activity of the cubic WC1-xphase. 展开更多
关键词 Tungsten carbide CVT-mechanism WO2(OH)2 Carburation nano-sized powder Transmission electron microscopy(TEM)
原文传递
Development of Ti–V–Mo Complex Microalloyed Hot-Rolled 900-MPa-Grade High-Strength Steel 被引量:11
3
作者 Ke Zhang Zhao-Dong Li +4 位作者 Xin-Jun Sun Qi-Long Yong Jun-Wei Yang Yuan-Mei Li Pei-Lin Zhao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第5期641-648,共8页
A new Ti-V-Mo complex microalloyed hot-rolled high-strength steel sheet was developed by controlling a thermo-mechanical controlled processing (TMCP) schedule, in particular with variants in coiling temperature. The... A new Ti-V-Mo complex microalloyed hot-rolled high-strength steel sheet was developed by controlling a thermo-mechanical controlled processing (TMCP) schedule, in particular with variants in coiling temperature. The effects of coiling temperature (CT) on various hardening mechanisms and mechanical properties of Ti-V-Mo complex mi- croalloyed high-strength low-alloy steels were investigated. The results revealed that the steels are mainly strengthened by a combined effect of ferrite grain refinement hardening and precipitation hardening. The variation in simulated coiling temperature causes a significant difference in strength, which is mainly attributed to different precipitation hardening increment contributions. When the CT is 600 ℃, the experimental steel has the best mechanical properties: ultimate tensile strength (UTS) 1000 MPa, yield strength (YS) 955 MPa and elongation (EL) 17%. Moreover, about 82 wt% of the total precipitates are nano-sized carbide particles with diameter of 1-10 nm, which is randomly dispersed in the ferrite matrix. The nano-sized carbide particles led to a strong precipitation hardening increment up to 310 MPa. 展开更多
关键词 Hot-rolled high-strength steel Strengthening mechanism nano-sized carbide Precipitationhardening Coiling temperature
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部