SnO 2 powder was prepared by chemical precipitation method. Effects of starting materials concentration, pH value of final system and treating temperature on the particle size were investigated by means of X-ray diffr...SnO 2 powder was prepared by chemical precipitation method. Effects of starting materials concentration, pH value of final system and treating temperature on the particle size were investigated by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The parameters of chemical precipitation were optimized. It is concluded that the concentration of starting material and pH value of final system has little effect on the SnO 2 particle size, but heat treatment do greatly affect the particle size. If the treating temperature is lower than 500 ℃, the particle size has a good stability; otherwise, the particle size remarkably increases with increasing temperature. The dispersing agents have various influences on SnO 2 powder as the polarity of dispersing agents changed.展开更多
Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. S...Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes.展开更多
Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g...Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .展开更多
The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composit...The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.展开更多
A flower-like SnO_(2)–SnO/porous Ga N(FSS/PGaN) heterojunction was fabricated for the first time via a facile spraying process, and the whole process also involved hydrothermal preparation of FSS and electrochemical ...A flower-like SnO_(2)–SnO/porous Ga N(FSS/PGaN) heterojunction was fabricated for the first time via a facile spraying process, and the whole process also involved hydrothermal preparation of FSS and electrochemical wet etching of GaN,and SnO_(2)–SnO composites with p–n junctions were loaded onto PGaN surface directly applied to H_(2)S sensor. Meanwhile,the excellent transport capability of heterojunction between FSS and PGaN facilitates electron transfer, that is, a response time as short as 65 s and a release time up to 27 s can be achieved merely at 150℃ under 50 ppm H_(2)S concentration, which has laid a reasonable theoretical and experimental foundation for the subsequent PGaN-based heterojunction gas sensor.The lowering working temperature and high sensitivity(23.5 at 200 ppm H2S) are attributed to the structure of PGaN itself and the heterojunction between SnO_(2)–SnO and PGaN. In addition, the as-obtained sensor showed ultra-high test stability.The simple design strategy of FSS/PGaN-based H_(2)S sensor highlights its potential in various applications.展开更多
All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid elect...All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells.展开更多
Nanocrystalline SnO<sub>2</sub> and CuO doped with SnO<sub>2</sub> were prepared by the co-precipitation method and characterized for different physiochemical properties and microbiological act...Nanocrystalline SnO<sub>2</sub> and CuO doped with SnO<sub>2</sub> were prepared by the co-precipitation method and characterized for different physiochemical properties and microbiological activity. The composition and morphological formation were characterized by XRD, HRTEM, Raman, FTIR, and UV-vis spectroscopy. The Powder X-ray analysis reveals that Sn4+ ions have substituted the Cu<sup>2+</sup> ions without changing the monoclinic structure of SnO<sub>2</sub> but the average particle size of the SnO<sub>2</sub> and CuO doped SnO<sub>2</sub> samples from 11 and 5 nm respectively. However, it exhibits an inhibiting strong bacterial growth against tested bacterial strains.展开更多
The material considered in this study, SnO2 (110), has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small mo-lecules. In the following calculatio...The material considered in this study, SnO2 (110), has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small mo-lecules. In the following calculations crystal line SnO2 nano-crystal have been considered. The grains lattice, which has the rutile structure of the bulk material, includes oxygen vacancies and depositing a gaseous molecule, either ethanol, above an atom on the grain surface, generates the adsorbed system. The conduc-tance has a functional relationship with the structure and the distance molecule of the na-no- crystal and its dependence on these quanti-ties parallels the one of the binding energy. The calculations have quantum mechanical detail and are based on a semi-empirical (MNDO me-thod), which is applied to the evaluation of both the electronic structure and of the conductance. We study the structural, total energy, thermo-dynamic and conductive properties of absorp-tion C2H5OH on nano-crystal, which convert to acetaldehyde and acetone.展开更多
以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti ...以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti O2 做了简单对比 .结果表明 :所制 Ti O2 / Sn O2 样品为包覆型结构 ,由锐钛矿型 Ti O2 金红石型 Sn O2 组成 ,与 Sn O2 及 Ti O2 晶体粉末相比所制 Ti O2 / Sn O2 包覆粒子光催化活性得到明显提高 .展开更多
文摘SnO 2 powder was prepared by chemical precipitation method. Effects of starting materials concentration, pH value of final system and treating temperature on the particle size were investigated by means of X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The parameters of chemical precipitation were optimized. It is concluded that the concentration of starting material and pH value of final system has little effect on the SnO 2 particle size, but heat treatment do greatly affect the particle size. If the treating temperature is lower than 500 ℃, the particle size has a good stability; otherwise, the particle size remarkably increases with increasing temperature. The dispersing agents have various influences on SnO 2 powder as the polarity of dispersing agents changed.
基金supported by the National Natural Science Foundation of China (21263015)the Education Department of Jiangxi Province (KJLD14005)the Natural Science Foundation of Jiangxi Province(20151BBE50006,20122BAB203009)~~
文摘Polycrystalline SnO2 fine powder consisting of nano-particles (SnO2-NP), SnO2 nano-sheets (SnO2-NS), and SnO2 containing both nano-rods and nano-particles (SnO2-NR+NP) were prepared and used for CO oxidation. SnO2-NS possesses a mesoporous structure and has a higher surface area, larger pore volume, and more active species than SnO2-NP, and shows improved activity. In contrast, although SnO2-NR+NP has only a slightly higher surface area and pore volume, and slightly more active surface oxygen species than SnO2-NP, it has more exposed active (110) facets, which is the reason for its improved oxidation activity. Water vapor has only a reversible and weak influence on SnO2-NS, therefore it is a potential catalyst for emission control processes.
基金Funded by the National Science Foundation of China ( No.50375037)
文摘Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ .
文摘The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging.
基金supported by the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (Grant Nos. XK1060921115 and XK1060921002)Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62204125)+1 种基金the National Key R&D Program of China (Grant No. 2022YFB3605404)the Natural Science Foundation of Guangdong Province, China (Grant No. 2019A1515010790)。
文摘A flower-like SnO_(2)–SnO/porous Ga N(FSS/PGaN) heterojunction was fabricated for the first time via a facile spraying process, and the whole process also involved hydrothermal preparation of FSS and electrochemical wet etching of GaN,and SnO_(2)–SnO composites with p–n junctions were loaded onto PGaN surface directly applied to H_(2)S sensor. Meanwhile,the excellent transport capability of heterojunction between FSS and PGaN facilitates electron transfer, that is, a response time as short as 65 s and a release time up to 27 s can be achieved merely at 150℃ under 50 ppm H_(2)S concentration, which has laid a reasonable theoretical and experimental foundation for the subsequent PGaN-based heterojunction gas sensor.The lowering working temperature and high sensitivity(23.5 at 200 ppm H2S) are attributed to the structure of PGaN itself and the heterojunction between SnO_(2)–SnO and PGaN. In addition, the as-obtained sensor showed ultra-high test stability.The simple design strategy of FSS/PGaN-based H_(2)S sensor highlights its potential in various applications.
基金supported by the National Natural Science Foundation of China(52203066,51973157,61904123,51873152)the Tianjin Natural Science Foundation(18JCQNJC02900)+3 种基金the Science and Technology Plans of Tianjin(19PTSYJC00010)the Tianjin Research Innovation Project for Postgraduate Students(2021YJSB234)the Science&Technology Development Fund of Tianjin Education Commission for Higher Education(2018KJ196)State Key Laboratory of Membrane and Membrane Separation,Tiangong University。
文摘All-solid-state electrolytes are exceedingly attractive because of the outstanding inherent safety and energy density compared to liquid electrolytes.Whereas,it is still formidable to simultaneously design solid electrolytes with favorable electrode/electrolyte interface compatibility and high ionic conductivity in a simple and scalable manner.Hence,the oxygen-vacancy-rich Gd-doped SnO_(2) nanotubes(GDS NTs)are innovatively prepared and applied to the electrolyte of all-solid-state lithium metal batteries for the first time.The addition of GDS NTs can validly construct long-range co ntinuous ion transport networks in the poly(ethylene oxide)(PEO)-based system and greatly improve the mechanical properties of the electrolyte.Compared to the PEO-based electrolyte,the composite electrolyte displays a higher lithium ion conductivity of 2.41×10^(-4) S cm^(-1) at 30℃,a higher lithium ion transference number up to 0.62 and a wider electrochemical window of 5 V at 50℃.In addition,the composite electrolyte manifests outstanding compatibility with high-voltage LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811)cathode,LiFePO4 cathode and lithium metal anode.The assembled Li/Li symmetric battery exhibits stable Li plating/stripping cycling performance,which can cycle steadily for 1500 h at a capacity of 0.3 mA h cm^(-2).And Li/LiFePO4 battery still maintains a high capacity of 131.54 mA h g^(-1) at 0.5C after 800 cycles,which has a superior capacity retention rate of 93.2%.The obtained novel composite electrolyte has promising application prospects in the field of all-solid-state lithium metal cells.
文摘Nanocrystalline SnO<sub>2</sub> and CuO doped with SnO<sub>2</sub> were prepared by the co-precipitation method and characterized for different physiochemical properties and microbiological activity. The composition and morphological formation were characterized by XRD, HRTEM, Raman, FTIR, and UV-vis spectroscopy. The Powder X-ray analysis reveals that Sn4+ ions have substituted the Cu<sup>2+</sup> ions without changing the monoclinic structure of SnO<sub>2</sub> but the average particle size of the SnO<sub>2</sub> and CuO doped SnO<sub>2</sub> samples from 11 and 5 nm respectively. However, it exhibits an inhibiting strong bacterial growth against tested bacterial strains.
文摘The material considered in this study, SnO2 (110), has a widespread use as gas sensor and oxygen vacancies are known to act as active catalytic sites for the adsorption of small mo-lecules. In the following calculations crystal line SnO2 nano-crystal have been considered. The grains lattice, which has the rutile structure of the bulk material, includes oxygen vacancies and depositing a gaseous molecule, either ethanol, above an atom on the grain surface, generates the adsorbed system. The conduc-tance has a functional relationship with the structure and the distance molecule of the na-no- crystal and its dependence on these quanti-ties parallels the one of the binding energy. The calculations have quantum mechanical detail and are based on a semi-empirical (MNDO me-thod), which is applied to the evaluation of both the electronic structure and of the conductance. We study the structural, total energy, thermo-dynamic and conductive properties of absorp-tion C2H5OH on nano-crystal, which convert to acetaldehyde and acetone.
文摘以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti O2 做了简单对比 .结果表明 :所制 Ti O2 / Sn O2 样品为包覆型结构 ,由锐钛矿型 Ti O2 金红石型 Sn O2 组成 ,与 Sn O2 及 Ti O2 晶体粉末相比所制 Ti O2 / Sn O2 包覆粒子光催化活性得到明显提高 .