期刊文献+
共找到1,999篇文章
< 1 2 100 >
每页显示 20 50 100
Dredged marine soil stabilization using magnesia cement augmented with biochar/slag
1
作者 Chikezie Chimere Onyekwena Qi Li +5 位作者 Yong Wang Ishrat Hameed Alvi Wentao Li Yunlu Hou Xianwei Zhang Min Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1000-1017,共18页
Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materia... Dredged marine soils(DMS)have poor engineering properties,which limit their usage in construction projects.This research examines the application of reactive magnesia(rMgO)containing supplementary cementitious materials(SCMs)to stabilize DMS under ambient and carbon dioxide(CO_(2))curing conditions.Several proprietary experimental tests were conducted to investigate the stabilized DMS.Furthermore,the carbonation-induced mineralogical,thermal,and microstructural properties change of the samples were explored.The findings show that the compressive strength of the stabilized DMS fulfilled the 7-d requirement(0.7-2.1 MPa)for pavement and building foundations.Replacing rMgO with SCMs such as biochar or ground granulated blast-furnace slag(GGBS)altered the engineering properties and particle packing of the stabilized soils,thus influencing their performances.Biochar increased the porosity of the samples,facilitating higher CO_(2) uptake and improved ductility,while GGBS decreased porosity and increased the dry density of the samples,resulting in higher strength.The addition of SCMs also enhanced the water retention capacity and modified the pH of the samples.Microstructural analysis revealed that the hydrated magnesium carbonates precipitated in the carbonated samples provided better cementation effects than brucite formed during rMgO hydration.Moreover,incorporating SCMs reduced the overall global warming potential and energy demand of the rMgO-based systems.The biochar mixes demonstrated lower toxicity and energy consumption.Ultimately,the rMgO and biochar blend can serve as an environmentally friendly additive for soft soil stabilization and permanent fixation of significant amounts of CO_(2) in soils through mineral carbonation,potentially reducing environmental pollution while meeting urbanization needs. 展开更多
关键词 Dredged marine soil CO_(2)uptake Reactive magnesia BIOCHAR Ground granulated blast-furnace slag
下载PDF
NiMo/Al_2O_3 catalyst containing nano-sized zeolite Y for deep hydrodesulfurization and hydrodenitrogenation of diesel 被引量:8
2
作者 Hailiang Yin Tongna Zhou Yunqi Liu Yongming Chai Chenguang Liu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第4期441-448,共8页
Two mixed-matrix NiMo/Al2O3 catalysts containing nano-and micro-sized zeolite Y have been prepared to explore the size effect of zeolite Y particle on the hydrodesulfurization(HDS)and hydrodenitrogenation(HDN)acti... Two mixed-matrix NiMo/Al2O3 catalysts containing nano-and micro-sized zeolite Y have been prepared to explore the size effect of zeolite Y particle on the hydrodesulfurization(HDS)and hydrodenitrogenation(HDN)activities of fluid catalytic cracking(FCC)diesel.They were characterized by SEM,BET,XRD,H2-TPR,NH3-TPD and HRTEM.The results show that the catalyst containing nano-sized zeolite Y possesses larger average pore diameter,higher pore volume,weaker and lesser acid sites,more easily reducible metal phases,shorter MoS2 slabs and more slab layers than the catalyst containing micro-sized zeolite Y.The catalysts were also evaluated with a high-pressure fixed-bed reactor using real FCC diesel as feed.The results display that the catalyst containing nano-sized zeolite Y bears higher HDS and HDN activities and exhibits higher relative rate constant for the removal of total sulfur or nitrogen than the one containing micro-sized zeolite. 展开更多
关键词 zeolite Y nano-sized zeolite micro-sized zeolite HYDRODESULFURIZATION HYDRODENITROGENATION DIESEL
下载PDF
Synthesis of Nano-sized Yttria via a Sol-Gel Process Based on Hydrated Yttrium Nitrate and Ethylene Glycol and Its Catalytic Performance for Thermal Decomposition of NH_4ClO_4 被引量:11
3
作者 陈伟凡 李凤生 +1 位作者 刘磊力 李永绣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期543-548,共6页
Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination te... Nano-sized yttria particles were synthesized via a non-aqueous sol-gel process based on hydrated yttrium nitrate and ethylene glycol. The effects of the molar ratio of ethylene glycol to yttrium ion and calcination temperature on crystallite size of the products were studied. The catalytic performance of the as-prepared yttria for the ammonium perchlorate (AP) decomposition was investigated by differential scanning calorimetry (DSC). The results indicate that the nano-sized cubic yttria particles with less than 20 nm in average crystallite size can be obtained after 2 h reflux at 70℃, dried at 90 ℃, forming xerogel, and followed by annealing of xerogel for 2 h, and that the addition of the nano-sized yttria to AP incorporates two small exothermic peaks of AP in the temperature ranges of 310 - 350 ℃ and 400 - 470 ℃ into a strong exothermic peak of AP and increases the apparent decomposition heat from 515 to over 1110 J·g^- 1. It is also clear that the temperature of AP decomposition exothermic peak decreases and the apparent decomposition heat of AP increases with the increase of the amount of nano-sized yttria. The fact that the addition of the 5 % nano-sized yttria to AP decreases the temperature of AP exothermic peak to 337.7℃ by reduction of 114.6℃ and increases the apparent decomposition heat from 515 to 1240 J·g^-1, reveals that nano-sized yttria shows strong catalytic property for AP thermal decomposition. 展开更多
关键词 nano-sized yttria ethylene glycol sol-gel ammonium perchlorate thermal decomposition catalytic property rare earths
下载PDF
Synthesis and Characterization of Nano-sized Boron Powder Prepared by Plasma Torch 被引量:4
4
作者 黄志军 吴青友 +3 位作者 李祥 尚书勇 戴晓雁 印永祥 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第5期577-580,共4页
Hydrogen thermal plasma jet was employed to prepare nano-sized boron powder with hydrogen reduction of BCI3. The maximum yield of nano-sized boron powders was about 50% with the operational conditions of H2/BCl3 of 4.... Hydrogen thermal plasma jet was employed to prepare nano-sized boron powder with hydrogen reduction of BCI3. The maximum yield of nano-sized boron powders was about 50% with the operational conditions of H2/BCl3 of 4.5:1, total feed of 4.9 m3/h, and plasma power of 25 kW. The samples were analyzed by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), and inductively coupled plasma - mass spectrometry (ICP-MS), inductively coupled plasma - atomic emission spectrometry (ICP-AES), inductive combustion infrared absorption (ICIA) and infrared thermal conductivity of oxygen and nitrogen analyzer (ITCA). The results show that the boron powders have different crystal structures with higher dispersion and purity. The average diameter is about 50 nm, and the purity is 90.29% or so. This new technology can use simple process to produce high quality boron powders, and is feasible for industrial production. 展开更多
关键词 nano-sized boron powder thermal plasma ultra-fine powder
下载PDF
Effect of deep cryogenic treatment on the formation of nano-sized carbides and the wear behavior of D2 tool steel 被引量:3
5
作者 Kamran Amini Amin Akhbarizadeh Sirus Javadpour 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2012年第9期795-799,共5页
The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffracti... The effect of deep cryogenic treatment on the microstructure, hardness, and wear behavior of D2 tool steel was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), hardness test, pin-on-disk wear test, and the reciprocating pin-on-fiat wear test. The results show that deep cryogenic treatment eliminates retained austenite, makes a better carbide distribution, and increases the carbide content. Furthermore, some new nano-sized carbides form during the deep cryogenic treatment, thereby increasing the hardness and improving the wear behavior of the samples. 展开更多
关键词 cryogenic treatment tool steel nano-sized carbides wear resistance HARDNESS AUSTENITE
下载PDF
Effects of nano-sized aluminum on detonation characteristics and metal acceleration for RDX-based aluminized explosive 被引量:4
6
作者 Dan-yang Liu Pin Zhao +2 位作者 Serene Hay-Yee Chan Huey Hoon Hng Lang Chen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期327-337,共11页
Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al wit... Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the parameters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 ms throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 ms higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives. 展开更多
关键词 nano-sized aluminum Detonation reaction zone Explosive metal acceleration Thermodynamic equilibrium calculation Laser interferometry
下载PDF
Comparative study of the explosion pressure characteristics of micro- and nano-sized coal dust and methane–coal dust mixtures in a pipe 被引量:5
7
作者 Bo Tan Huilin Liu +1 位作者 Bin Xu Tian Wang 《International Journal of Coal Science & Technology》 EI 2020年第1期68-78,共11页
Coal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust.In order to study the impact of nano-sized coal on coal dust and methane–coal dust expl... Coal dust explosion accidents often cause substantial property damage and casualties and frequently involve nano-sized coal dust.In order to study the impact of nano-sized coal on coal dust and methane–coal dust explosions,a pipe test apparatus was used to analyze the explosion pressure characteristics of five types of micro-nano particle dusts(800 nm,1200 nm,45μm,60μm,and 75μm)at five concentrations(100 g/m3,250 g/m3,500 g/m3,750 g/m3,and 1000 g/m3).The explosion pressure characteristics were closely related to the coal dust particle size and concentration.The maximum explosion pressure,maximum rate of pressure rise,and deflagration index for nano-sized coal dust were larger than for its micro-sized counterpart,indicating that a nano-sized coal dust explosion is more dangerous.The highest deflagration index Kst for coal dust was 13.97 MPa/(m·s),indicating weak explosibility.When 7%methane was added to the air,the maximum deflagration index Kst for methane–coal dust was 42.62 MPa/(m·s),indicating very strong explosibility.This indicates that adding methane to the coal dust mixture substantially increased the hazard grade. 展开更多
关键词 A pipe test apparatus nano-sized Coal dust explosion Methane/coal dust explosion Pressure characteristics
下载PDF
Synthesis of Neodymium-Doped Yttrium Aluminum Garnet (Nd∶YAG) Nano-Sized Powders by Low Temperature Combustion 被引量:8
8
作者 张华山 苏春辉 +1 位作者 韩辉 侯朝霞 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第3期304-308,共5页
The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as ... The homogeneously dispersed, less agglomerated (Nd0.01Y0.99)3Al5O12 nano-sized powders were synthesized by the low temperature combustion (LCS), using Nd2O3, Y2O3, Al(NO3)3·9H2O, ammonia water and citric acid as starting materials. This method effectively solves the problems caused by solid-state reaction at high temperature and hard agglomerates brought by the chemical precipitation method. The powders were characterized by TG-DTA, XRD, FT-IR, TEM respectively and the photoluminescence (PL) spectra of (Nd0.01Y0.99)3Al5O12 green and sintered ceramic disks were measured. The results show that the forming temperature of YAG crystal phase is 850 ℃ and YAP crystal phase appearing during the calcinations transforms to pure YAG at 1050 ℃. The particle size of the powders synthesized by the LCS is in a range of 20~50 nm depending on the thermal treatment temperatures. The effectively induced cross section (σin) with the value 4.03×10-19 cm2 of (Nd0.01Y0.99)3Al5O12 ceramics is about 44% higher than that of single crystal. 展开更多
关键词 laser ceramics neodymium-doped yttrium aluminum garnet (Nd∶YAG) nano-sized powders low temperature combustion synthesis (LCS)
下载PDF
Seed-Assisted Synthesis and Catalytic Performance of Nano-sized ZSM-5 Aggregates in a One-Step Crystallization Process 被引量:2
9
作者 Ziyang Wang Yaquan Wang +8 位作者 Chao Sun Aijuan Zhao Cui Wang Xu Zhang Jingjing Zhao Taotao Zhao Wenrong Liu Jiaxin Lu Shuhui Wu 《Transactions of Tianjin University》 EI CAS 2020年第4期292-304,共13页
Hierarchical nano-sized ZSM-5 aggregates were successfully synthesized via a seed-assisted method in the presence of cetyltrimethylammonium bromide(CTAB)through a facile one-step crystallization process.Commercial ZSM... Hierarchical nano-sized ZSM-5 aggregates were successfully synthesized via a seed-assisted method in the presence of cetyltrimethylammonium bromide(CTAB)through a facile one-step crystallization process.Commercial ZSM-5 zeolites with a SiO2/Al2O3 ratio comparable to that of ZSM-5 products were treated with alkali and used as the seed particles.The influences of crystallization conditions were investigated,and the possible synthesis mechanism was proposed.ZSM-5 zeolites with diff erent amounts of CTAB added were characterized using many techniques and evaluated in toluene alkylation with methanol.The results showed that a trace amount of CTAB signifi cantly promoted the crystallization of ZSM-5 zeolite,with the morphology changing from hexagonal-shape crystals to uniform spherical aggregates.CTAB may act as the structure-directing agent and assemble the primary crystallites to generate hierarchical ZSM-5 aggregates.The ZSM-5 zeolite with the smallest primary particles of 50-80 nm exhibited large specific surface area,abundant mesopores,and the greatest microporosity.The hierarchical nano-sized ZSM-5 aggregate showed higher toluene conversion and a longer lifetime without compromising the selectivity to xylene and p-xylene in toluene alkylation with methanol. 展开更多
关键词 Hierarchical ZSM-5 nano-sized aggregates Seed-assisted CTAB Toluene alkylation with methanol
下载PDF
Fabrication of Fine-Grained Si_3N_4-Si_2N_2O Composites by Sintering Amorphous Nano-sized Silicon Nitride Powders 被引量:3
10
作者 骆俊廷 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2006年第3期97-99,共3页
Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g... Si3N4-Si2N2O composites were fabricated with amorphous nano-sized silicon nitride powders by the liquid phase sintering ( LPS ). The Si2 N2O phase was generated by an in-situ reaction 2 Si3 N4 ( s ) + 1.5 02 ( g ) = 3 Si2 N2O ( s ) + N2 ( g ) . The content of Si2 N2 O phase up to 60% in the volume was obtained at a sintering temperature of 1 650℃ and reduced when the sintering temperature increased or decreased, indicating the reaction is reversible. The mass loss, relative density and average grain size increased with increasing the sintering temperature. The average grain size was less than 500 nm when the sintering temperature was below 1 700 ℃. The sintering procedure contains a complex crystallization and a phase transition : amorphous silicon nitride→equiaxial α- Si3 N4→ equiaxial β- Si3 N4→ rod- like Si2 N2O→ needle- like β- Si3N4 . Small round-shaped β→ Si3 N4 particles were entrapped in the Si2 N2O grains and a high density of staking faults was situated in the middle of Si2 N2O grains at a sintering temperature of 1 650 ℃. The toughness inereased from 3.5 MPa·m^1/2 at 1 600 ℃ to 7.2 MPa· m^1/2 at 1 800 ℃ . The hardness was as high as 21.5 GPa (Vickers) at 1 600 ℃ . 展开更多
关键词 Si3N4-Si2N2O composite in-situ reaction amorphous nano-sized silicon nitride
下载PDF
Fluoride-mediated nano-sized high-silica ZSM-5 as an ultrastable catalyst for methanol conversion to propylene 被引量:1
11
作者 Junjie Li Min Liu +2 位作者 Xinwen Guo Chengyi Dai Chunshan Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1225-1230,共6页
Fluoride mediated nano-sized ZSM-5 (ZSM-5-F) with a high Si/AI ratio of 181 was fabricated using a seed-induction method and evaluated the catalysis of the methanol to propylene (MTP) reaction. High propylene sele... Fluoride mediated nano-sized ZSM-5 (ZSM-5-F) with a high Si/AI ratio of 181 was fabricated using a seed-induction method and evaluated the catalysis of the methanol to propylene (MTP) reaction. High propylene selectivity (45%) was similar to ZSM-5-OH synthesized via a hydroxide route. However, ZSM- 5-F showed much longer lifetime (305 h) compared with ZSM-5-OH (157 h) in spite of similar crystal size and aluminum content. Characterization by NH3-TPD. Py-IR, OH-IR, SEM, TG-DTA, XRD and 1H MAS NMR techniques indicated that the enhanced catalytic performance of ZSM-S-F is attributed to the fewer structural defects in the form of internal silanol groups and silanol nests. 展开更多
关键词 Fluoride route nano-sized High Si/Al Structural defects MTP
下载PDF
Enhancing the Deactivation Durability of Nano-sized HZSM-5 for Aromatization by Adjusting its Ratio of Lewis/Brφnsted Acid Sites
12
作者 ZhouBoXU HongChenGUO +3 位作者 XiangShengWANG PeiQingZHANG LePingZHAO YongKangHU 《Chinese Chemical Letters》 SCIE CAS CSCD 2004年第9期1123-1126,共4页
Ratio of Lewis/Brfnsted acid sites (Cl/Cb) on the surface of nano-sized HZSM-5 was successfully manipulated by means of steaming and acid leaching. Significant enhancement of the deactivation durability of nano-sized... Ratio of Lewis/Brfnsted acid sites (Cl/Cb) on the surface of nano-sized HZSM-5 was successfully manipulated by means of steaming and acid leaching. Significant enhancement of the deactivation durability of nano-sized HZSM-5 in the aromatization of fluid catalytic cracking (FCC) gasoline olefins seems to be closely related to the increase of Lewis/Brfnsted acid sites ratio. 展开更多
关键词 Lewis acid Brfnsted acid nano-sized HZSM-5 AROMATIZATION gasoline.
下载PDF
Preparation and Mechanical Properties of Micro- and Nano-sized SiC/Fluoroelastomer Composites
13
作者 率志君 刘志刚 +5 位作者 WANG Donghua ZHOU Pan LI Wanyou QIAO Yingjie LIU Ruiliang ZHOU Shi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2013年第4期658-663,共6页
Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC... Microand nano-sized SiC/fluoroelastomer (FKM) composites were prepared by a mechanical mixing method. These composites were first characterized by a rotorless rheometer. Then the effects of micro- and nano-sized SiC on hardness, static and dynamic mechanical properties of the composites were investigated. The increasing amount of the SiC filler increased the curing efficiency of the biphenyl curing system, which was evident from the rheometric properties of the resulting composites. The tensile properties of composite increased with the increasing of micro- and nano-sized SiC content. When the micro- and nano-sized SiC content was higher than 20 phr, the composites showed almost unchanged tensile properties. The increasing of the tensile property was mainly attributed to the well dispersed micro- and nano-sized SiC particles characterized by SEM images. Compared to pure FKM, the composites exhibited a higher glass transition temperature and lower tan peak value. 展开更多
关键词 fluoroelastomer (FKM) micro- and nano-sized SiC composites mechanical properties
下载PDF
Influence of nanosized magnesia on the hydration of borehole-sealing cements prepared using different methods 被引量:1
14
作者 Quanle Zou Jinfei Zhan +1 位作者 Xin Wang Zhen Huang 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期343-360,共18页
Gas drainage is an efective technology for gas control in coal mines.A high borehole-sealing quality is the fundamental precondition for efcient gas drainage.The expansibilities of cement pastes used in borehole-seali... Gas drainage is an efective technology for gas control in coal mines.A high borehole-sealing quality is the fundamental precondition for efcient gas drainage.The expansibilities of cement pastes used in borehole-sealing processes are critical for the borehole-sealing efect.Nanosized magnesia expansive agents are used to improve the expansibilities of cement pastes and improve the borehole-sealing efect.Nuclear magnetic resonance spectrometry and scanning electron microscopy were adopted to study the efects of nanosized magnesia on the hydration of borehole-sealing cements used with diferent preparation methods.The results showed that an increase in the mass fraction of the nanosized magnesia promoted cement hydration,and the mass fraction was positively correlated with the promotion efect.The use of diferent preparation methods did not change the water-phase distribution in the cement.When using the wet-mixing preparation method,nanosized magnesia promoted the induction,acceleration,and deceleration periods of hydration;when using the dry-mixing preparation method,the nanosized magnesia promoted the induction period of cement hydration,and the promotion efect was less obvious than that seen when using the wet-mixing method.When using the wet-mixing preparation method,the nanosized magnesia was uniformly dispersed,thus enlarging the surface area of the reaction,which provided more nucleation sites for the hydration products of the cement and therefore accelerated the hydration reaction.When using the dry-mixing preparation method,the nanosized magnesia powders were dispersed nonuniformly and aggregated.Under these conditions,only a few nanosized magnesia particles on the surfaces of the aggregated clusters took part in hydration,so only a small number of nucleation sites were provided for the hydration products of cement.This led to inconsistent hydration of cement pastes prepared using the dry-mixing method.The surface porosity of the cement prepared with the wet-mixing preparation method frst decreased and then increased with increases in the mass fraction of the nanosized magnesia.The cement surface exhibited compact hydration products and few pores,and the surface was relatively smooth.In comparison,the surface porosity of the cement prepared using the dry-mixing method fuctuated with increasing mass fraction of the nanosized magnesia,resulting in a rough cement surface and microfractures on some surfaces.The two preparation methods both reduced the surface porosity of the cement.The wet-mixing preparation was more efective and consistent in improving the compactness of the cement than the dry-mixing preparation.These results provide important guidance on the addition of nanosized magnesia in borehole-sealing engineering and the selection of cement preparation methods,and they also lay a solid foundation for realizing safe and efcient gas drainage. 展开更多
关键词 Borehole-sealing cement Nanosized magnesia Preparation method HYDRATION Morphological analysis Nuclear magnetic resonance relaxation analysis
下载PDF
Mechanism of expanding swept volume by nano-sized oil-displacement agent
15
作者 LEI Qun LUO Jianhui +6 位作者 PENG Baoliang WANG Xiaocong XIAO Peiwen WANG Pingmei HE Lipeng DING Bin GENG Xiangfei 《Petroleum Exploration and Development》 2019年第5期991-997,共7页
The effect of expanding swept volume by iNanoW1.0 nanoparticles in ultra-low permeability core was studied by low-field nuclear magnetic resonance(LF-NMR)technology,and the mechanism of expanding swept volume was expl... The effect of expanding swept volume by iNanoW1.0 nanoparticles in ultra-low permeability core was studied by low-field nuclear magnetic resonance(LF-NMR)technology,and the mechanism of expanding swept volume was explained by oxygen spectrum nuclear magnetic resonance(17O-NMR)experiments and capillarity analysis.The results of the LF-NMR experiment show that the nano-sized oil-displacement agent iNanoW1.0 could increase the swept volume by 10%-20%on the basis of conventional water flooding,making water molecules get into the low permeable region with small pores that conventional water flooding could not reach.17O-NMR technique and capillary analysis proved that iNanoW1.0 nanoparticles could weaken the association of hydrogen bonds between water molecules,effectively change the structure of water molecular clusters,and thus increasing the swept volume in the low permeable region.The ability of weakening association of hydrogen bonds between water molecules of iNanoW1.0 nanoparticles increases with its mass fraction and tends to be stable after the mass fraction of 0.1%. 展开更多
关键词 nanoparticles nano-sized oil-displacement AGENT WATER FLOODING swept volume WATER molecular hydrogen bonding capillary action
下载PDF
Combustion and Ball Milled Synthesis of Rare Earth Nano-Sized Ceria Powder
16
作者 Ranjan Sen Siddhartha Das Karabi Das 《Materials Sciences and Applications》 2011年第5期416-420,共5页
This paper reports a study on nanocrystalline ceria powder prepared by high energy ball-milling and combustion synthesis methods. The combustion synthesis was carried out using ceric ammonium nitrate as oxidizer and c... This paper reports a study on nanocrystalline ceria powder prepared by high energy ball-milling and combustion synthesis methods. The combustion synthesis was carried out using ceric ammonium nitrate as oxidizer and citric acid, glycine or citric acid plus glycine as fuel. The minimum crystallite size of ceria powder is obtained by combustion synthesis of ceric ammonium nitrate and citric acid. The ceria powder produced by combustion synthesis of ceric ammonium nitrate and citric acid and glycine has less agglomeration of particles than other techniques. 展开更多
关键词 Ceramics BALL MILLING COMBUSTION Synthesis nano-sized CERIA X-Ray Diffraction
下载PDF
碳化复合桩(MCP)原理与应用试验研究
17
作者 刘松玉 王亮 +4 位作者 刘宜昭 杜广印 蔡光华 孙鹤 单彦贤 《岩土工程学报》 EI CAS CSCD 北大核心 2024年第7期1359-1367,共9页
介绍了一种基于MgO碳化固化软弱土技术的碳化复合桩(MCP),通过透气管桩向MgO搅拌桩注入CO_(2)气体进行碳化形成新型复合桩。进行了室内模型试验,通过对碳化过程和碳化后的温度、物理、力学等特性的分析,论证了该技术在粉土和淤泥质土中... 介绍了一种基于MgO碳化固化软弱土技术的碳化复合桩(MCP),通过透气管桩向MgO搅拌桩注入CO_(2)气体进行碳化形成新型复合桩。进行了室内模型试验,通过对碳化过程和碳化后的温度、物理、力学等特性的分析,论证了该技术在粉土和淤泥质土中的适应性,结果表明,在MgO充分水化的条件下,不同深度的碳化反应较为均匀;在透气管桩外围存在有效碳化距离和最大碳化距离,在有效碳化距离内可获取良好的碳化效果,揭示了MCP的形成机理与影响因素。在室内试验基础上开展了现场应用试验,结果表明,MCP施工工艺方便、成桩效果好且桩身强度均匀,碳化桩体标贯击数均值为39;其单桩竖向极限承载力为1920 kN,相对于PHC管桩提升37%。室内与现场试验表明,MCP复合桩兼具固碳与加固效果,对岩土工程低碳化发展具有重要意义。 展开更多
关键词 碳化复合桩 氧化镁 碳化距离 现场试验 工程特性
下载PDF
Nano-SiC薄膜在太阳能电池窗口表面的应用 被引量:3
18
作者 王二垒 张秀霞 +2 位作者 张丽霞 陈旭涛 杨小聪 《科学技术与工程》 北大核心 2013年第17期4878-4880,4889,共4页
由于环境的污染使空气中有泥土,太阳能电池在户外使用一段时间后,其窗口表面就会附着一些灰尘颗粒影响其进光量,进而影响太阳能电池的光电转换效率。采用溶胶凝胶法制备并通过热烧结过程,将Nano-SiC透明薄膜制备在太阳能电池窗口表面。... 由于环境的污染使空气中有泥土,太阳能电池在户外使用一段时间后,其窗口表面就会附着一些灰尘颗粒影响其进光量,进而影响太阳能电池的光电转换效率。采用溶胶凝胶法制备并通过热烧结过程,将Nano-SiC透明薄膜制备在太阳能电池窗口表面。通过实验测试了表面制备不同厚度的Nano-SiC薄膜对太阳能电池I-V特性的影响。实验结果表明Nano-SiC薄膜具有很好的光子透过性和自洁能力,能够提高太阳能电池的光电转换效率。 展开更多
关键词 nano-siC薄膜 太阳能电池窗口 光电转换效率 I-V特性
下载PDF
微孔白云石加入量对镁钙质中间包干式料性能的影响
19
作者 孟佳泽 陈定 +2 位作者 顾华志 黄奥 付绿平 《耐火材料》 CAS 北大核心 2024年第1期68-71,共4页
以白云石为原料,采用二步煅烧法制备的致密镁钙砂是镁钙质中间包干式料常用的耐火原料。然而二步煅烧法工艺复杂,资源耗费大,且致密镁钙砂不利于中间包干式料隔热性能的提升。以一步煅烧法(1400℃保温3 h)制备的微孔白云石和电熔镁砂为... 以白云石为原料,采用二步煅烧法制备的致密镁钙砂是镁钙质中间包干式料常用的耐火原料。然而二步煅烧法工艺复杂,资源耗费大,且致密镁钙砂不利于中间包干式料隔热性能的提升。以一步煅烧法(1400℃保温3 h)制备的微孔白云石和电熔镁砂为主要原料,分别于1100、1550℃热处理后制备了镁钙质干式料试样,研究了微孔白云石加入量(质量分数分别为0、15%、30%、45%和60%)对试样性能的影响。结果表明:随着微孔白云石加入量的增加,1100℃热处理后试样的线收缩率和体积密度呈减小趋势,常温耐压强度先增大后减小;1550℃热处理后试样的线收缩率先减小后显著增大,显气孔率增加,热导率大幅降低,但常温耐压强度和抗渣性能降低。当微孔白云石加入量为60%(w)时,1550℃热处理后试样在800℃下的热导率为2.410 W·m^(-1)·K^(-1),与传统镁质干式料相比下降了51.9%,同时常温耐压强度为26.0 MPa,在力学性能略微降低的情况下表现出优异的隔热性能。 展开更多
关键词 镁钙质 中间包 干式料 白云石 隔热性能
下载PDF
气孔结构参数对氧化镁耐火材料热冲击过程的影响
20
作者 陈滨滨 程桂石 +3 位作者 蔡酉铖 杨义浩 赵莹 王孝强 《电力科学与工程》 2024年第1期10-17,共8页
以氧化镁耐火材料为对象,研究了耐火材料热冲击过程中气孔结构参数对其温度分布以及热应力分布的影响。基于热弹性理论和有限元方法,建立了二维热冲击有限元模型和不同气孔模型,分析了耐火材料的损毁机理。数值模拟实验结果表明,耐火材... 以氧化镁耐火材料为对象,研究了耐火材料热冲击过程中气孔结构参数对其温度分布以及热应力分布的影响。基于热弹性理论和有限元方法,建立了二维热冲击有限元模型和不同气孔模型,分析了耐火材料的损毁机理。数值模拟实验结果表明,耐火材料在热冲击过程下不断受到热应力的作用,最大热应力会在热冲击初始阶段产生,材料的危险部位位于靠近材料上表面的气孔边缘处。在其他条件不变时,随着温度的升高,氧化镁耐火材料受到的热应力增大;热应力随着材料的气孔率增大而减小;热应力随气孔位置与耐火材料表面距离的减小而增大。该研究结果可为耐火材料的设计和热处理设备运行参数控制提供依据。 展开更多
关键词 氧化镁耐火材料 有限元分析 热冲击 热应力 气孔结构
下载PDF
上一页 1 2 100 下一页 到第
使用帮助 返回顶部