期刊文献+
共找到79,391篇文章
< 1 2 250 >
每页显示 20 50 100
Assessing the corrosion protection property of coatings loaded with corrosion inhibitors using the real-time atmospheric corrosion monitoring technique
1
作者 Xiaoxue Wang Lulu Jin +8 位作者 Jinke Wang Rongqiao Wang Xiuchun Liu Kai Gao Jingli Sun Yong Yuan Lingwei Ma Hongchang Qian Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期119-126,共8页
The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties ... The atmospheric corrosion monitoring(ACM)technique has been widely employed to track the real-time corrosion behavior of metal materials.However,limited studies have applied ACM to the corrosion protection properties of organic coatings.This study compared a bare epoxy coating with one containing zinc phosphate corrosion inhibitors,both applied on ACM sensors,to observe their corrosion protection properties over time.Coatings with artificial damage via scratches were exposed to immersion and alternating dry and wet environments,which allowed for monitoring galvanic corrosion currents in real-time.Throughout the corrosion tests,the ACM currents of the zinc phosphate/epoxy coating were considerably lower than those of the blank epoxy coating.The trend in ACM current variations closely matched the results obtained from regular electrochemical tests and surface analysis.This alignment highlights the potential of the ACM technique in evaluating the corrosion protection capabilities of organic coatings.Compared with the blank epoxy coating,the zinc phosphate/epoxy coating showed much-decreased ACM current values that confirmed the effective inhibition of zinc phosphate against steel corrosion beneath the damaged coating. 展开更多
关键词 atmospheric corrosion monitoring technology corrosion inhibitor coatING carbon steel corrosion protection
下载PDF
A facile method for fabrication of nano-structured Ni-Al_2O_3 graded coatings: Structural characterization 被引量:1
2
作者 Arash YAZDANI Taghi ISFAHANI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第1期77-87,共11页
Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings w... Powder charges of micron-size Ni and Al2O3were utilized to deposit nano-structured Ni-Al2O3composite coatings on analuminum plate fixed at the top end of a milling vial using a planetary ball mill.Composite coatings were fabricated using powdermixtures with a wide range of Ni/Al2O3mass ratio varying from1:1to plain Ni.XRD,SEM and TEM techniques were employed tostudy the structural characteristics of the coatings.It was found that the composition of the starting mixture strongly affects the Al2O3content and the microstructure of the final coating.Mixtures containing higher contents of Al2O3yield higher volume fractions of theAl2O3particles in the coating.Though Ni-Al2O3composite coatings with about50%of Al2O3particles were successfully deposited,well-compacted and free of cracks and/or voids coatings included less than20%(volume fraction)of Al2O3particles which weredeposited from powder mixtures with Ni/Al2O3mass ratios of4:1or higher.Moreover,mechanical and metallurgical bondings arethe main mechanisms of the adhesion of the coating to the Al substrate.Finally,functionally graded composite coatings withnoticeable compaction and integrity were produced by deposition of two separate layers under identical coating conditions. 展开更多
关键词 metal matrix composite Ni-Al2O3 graded coating structural characterization
下载PDF
Enhancing Mechanical Stability of Nano-Structured Anti-Reflection Coatings
3
作者 Behnam Kheyraddini Mousavi Tito Busani +1 位作者 Mani Hossein Zadeh Steven Roy Julien Brueck 《Journal of Applied Mathematics and Physics》 2020年第2期247-258,共12页
Periodic Nanostructured anti-reflection coatings (NALs) are a promising option for enhancing transmission of coherent light without inducing scattering. We’ve found that reducing the height of NALs below a critical v... Periodic Nanostructured anti-reflection coatings (NALs) are a promising option for enhancing transmission of coherent light without inducing scattering. We’ve found that reducing the height of NALs below a critical value to enhance mechanical stability can highly reduce the transmission efficiency. Here, using Rigorous Couples Wave Analysis (RCWA), we find the minimum height for over 99% transmission and effect of height on transmission bandwidth. Then, during a one-step plasma etching, two samples with different heights have been generated and their efficiency is evaluated using RCWA. 展开更多
关键词 MAXIMUM TRANSMISSION MECHANICAL Stability REFLECTION Laser nano-structurE
下载PDF
High corrosion and wear resistant electroless Ni–P gradient coatings on aviation aluminum alloy parts 被引量:3
4
作者 Bo Wang Jiawei Li +2 位作者 Zhihui Xie Gengjie Wang Gang Yu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期155-164,共10页
A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were... A Ni–P alloy gradient coating consisting of multiple electroless Ni–P layers with various phosphorus contents was prepared on the aviation aluminum alloy. Several characterization and electrochemical techniques were used to characterize the different Ni–P coatings’ morphologies, phase structures, elemental compositions, and corrosion protection. The gradient coating showed good adhesion and high corrosion and wear resistance, enabling the application of aluminum alloy in harsh environments. The results showed that the double zinc immersion was vital in obtaining excellent adhesion (81.2 N). The optimal coating was not peeled and shredded even after bending tests with angles higher than 90°and was not corroded visually after 500 h of neutral salt spray test at 35℃. The high corrosion resistance was attributed to the misaligning of these micro defects in the three different nickel alloy layers and the amorphous structure of the high P content in the outer layer. These findings guide the exploration of functional gradient coatings that meet the high application requirement of aluminum alloy parts in complicated and harsh aviation environments. 展开更多
关键词 aluminum alloy ELECTROLESS nickel coating CORROSION ADHESION
下载PDF
Design multifunctional Mg–Zr coatings regulating Mg alloy bioabsorption 被引量:2
5
作者 Zohra Benzarti Sandesh Itani +2 位作者 JoséDavid Castro Sandra Carvalho Ana Sofia Ramos 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1461-1478,共18页
Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequ... Magnesium(Mg)alloys are widely used for temporary bone implants due to their favorable biodegradability,cytocompatibility,hemocompatibility,and close mechanical properties to bone.However,rapid degradation and inadequate strength limit their applicability.To overcome this,the direct current magnetron sputtering technique is employed for surface coating in Mg-based alloys using various zirconium(Zr)content.This approach presents a promising strategy for simultaneously improving corrosion resistance,maintaining biocompatibility,and enhancing strength without compromising osseointegration.By leveraging Mg’s inherent biodegradability,it has the potential to minimize the need for secondary surgeries,thereby reducing costs and resources.This paper is a systematic study aimed at understanding the corrosion mechanisms of Mg–Zr coatings,denoted Mg-xZr(x=0–5 at.%).Zr-doped coatings exhibited columnar growth leading to denser and refined structures with increasing Zr content.XRD analysis confirmed the presence of the Mg(00.2)basal plane,shifting towards higher angles(1.15°)with 5 at.%Zr doping due to lattice parameter changes(i.e.,decrease and increase of“c”and“a”lattice parameters,respectively).Mg–Zr coatings exhibited“liquidphilic”behavior,while Young’s modulus retained a steady value around 80 GPa across all samples.However,the hardness has significantly improved across all samples’coating,reaching the highest value of(2.2±0.3)GPa for 5 at.%Zr.Electrochemical testing in simulated body fluid(SBF)at 37℃ revealed a significant enhancement in corrosion resistance for Mg–Zr coatings containing 1.0–3.4 at.%Zr.Compared with the 5 at.%Zr coating which exhibited a corrosion rate of 32 mm/year,these coatings displayed lower corrosion rates,ranging from 1 to 12 mm/year.This synergistic enhancement in mechanical properties and corrosion resistance,achieved with 2.0–3.4 at.%Zr,suggests potential ability for reducing stress shielding and controlled degradation performance,and consequently,promising functional biodegradable materials for temporary bone implants. 展开更多
关键词 Mg-Zr coatings Magnetron sputtering NANOINDENTATION Corrosion resistance Bone implants
下载PDF
Surface Metallization of Glass Fiber(GF)/Polyetheretherketone(PEEK) Composite with Cu Coatings Deposited by Magnetron Sputtering and Electroplating 被引量:1
6
作者 钟利 金凡亚 +2 位作者 朱剑豪 TONG Honghui DAN Min 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期213-220,共8页
Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), sc... Surface metallization of glass fiber(GF)/polyetheretherketone(PEEK)[GF/PEEK] is conducted by coating copper using electroplating and magnetron sputtering and the properties are determined by X-ray diffraction(XRD), scanning electron microscopy(SEM), and electron backscatter diffraction(EBSD).The coating bonding strength is assessed by pull-out tests and scribing in accordance with GB/T 9286-1998.The results show that the Cu coating with a thickness of 30 μm deposited on GF/PEEK by magnetron sputtering has lower roughness, finer grain size, higher crystallinity, as well as better macroscopic compressive stress,bonding strength, and electrical conductivity than the Cu coating deposited by electroplating. 展开更多
关键词 surface metallization Cu coating magnetron sputtering ELECTROPLATING
下载PDF
Bio-Based Waterborne Poly(Vanillin-Butyl Acrylate)/MXene Coatings for Leather with Desired Warmth Retention and Antibacterial Properties 被引量:1
7
作者 Jianzhong Ma Li Ma +3 位作者 Lei Zhang Wenbo Zhang Qianqian Fan Buxing Han 《Engineering》 SCIE EI CAS CSCD 2024年第5期250-263,共14页
This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to... This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to coatings layered on leather,but could also be employed as a green alternative to petroleum-based carcinogen styrene(St).Herein,MV was copolymerized with butyl acrylate(BA)to obtain waterborne bio-based P(MV-BA)miniemulsion via miniemulsion polymerization.Subsequently,MXene nanosheets with excellent photothermal conversion performance and antibacterial properties,were introduced into the P(MV-BA)miniemulsion by ultrasonic dispersion.During the gradual solidification of P(MV-BA)/MXene nanocomposite miniemulsion on the leather surface,MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene,which prompted its full exposure to light and bacteria,exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy.In particular,when the dosage of MXene nanosheets was 1.4 wt%,the surface temperature of P(MV-BA)/MXene nanocomposite miniemulsioncoated leather(PML)increased by about 15℃ in an outdoor environment during winter,and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100%under the simulated sunlight treatment for 30 min.Moreover,the introduction of MXene nanosheets increased the air permeability,water vapor permeability,and thermal stability of these coatings.This study provides a new insight into the preparation of novel,green,and waterborne bio-based nanocomposite coatings for leather,with desired warmth retention and antibacterial properties.It can not only realize zerocarbon heating based on sunlight in winter,reducing the use of fossil fuels and greenhouse gas emissions,but also improve ability to fight off invasion by harmful bacteria,viruses,and other microorganisms. 展开更多
关键词 MXene nanosheets VANILLIN Styrene substitute Leather coating Photothermal conversion Warmth retention Antibacterial properties
下载PDF
Developing an atmospheric aging evaluation model of acrylic coatings:A semi-supervised machine learning algorithm
8
作者 Yiran Li Zhongheng Fu +5 位作者 Xiangyang Yu Zhihui Jin Haiyan Gong Lingwei Ma Xiaogang Li Dawei Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第7期1617-1627,共11页
To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was d... To study the atmospheric aging of acrylic coatings,a two-year aging exposure experiment was conducted in 13 representative climatic environments in China.An atmospheric aging evaluation model of acrylic coatings was developed based on aging data including11 environmental factors from 567 cities.A hybrid method of random forest and Spearman correlation analysis was used to reduce the redundancy and multicollinearity of the data set by dimensionality reduction.A semi-supervised collaborative trained regression model was developed with the environmental factors as input and the low-frequency impedance modulus values of the electrochemical impedance spectra of acrylic coatings in 3.5wt%NaCl solution as output.The model improves accuracy compared to supervised learning algorithms model(support vector machines model).The model provides a new method for the rapid evaluation of the aging performance of acrylic coatings,and may also serve as a reference to evaluate the aging performance of other organic coatings. 展开更多
关键词 acrylic coatings coatings aging atmospheric environment machine learning
下载PDF
Multiscale Simulation of Microstructure Evolution during Preparation and Service Processes of Physical Vapor Deposited c-TiAlN Coatings
9
作者 Yehao Long Jing Zhong +2 位作者 Tongdi Zhang Li Chen Lijun Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第6期3435-3453,共19页
Physical Vapor Deposited(PVD)TiAlN coatings are extensively utilized as protective layers for cutting tools,renowned for their excellent comprehensive performance.To optimize quality control of TiAlN coatings for cutt... Physical Vapor Deposited(PVD)TiAlN coatings are extensively utilized as protective layers for cutting tools,renowned for their excellent comprehensive performance.To optimize quality control of TiAlN coatings for cutting tools,a multi-scale simulation approach is proposed that encompasses the microstructure evolution of coatings considering the entire preparation and service lifecycle of PVD TiAlN coatings.This scheme employs phase-field simulation to capture the essential microstructure of the PVD-prepared TiAlN coatings.Moreover,cutting simulation is used to determine the service temperature experienced during cutting processes at varying rates.Cahn-Hilliard modeling is finally utilized to consume the microstructure and service condition data to acquaint the microstructure evolution of TiAlN coatings throughout the cutting processes.This methodology effectively establishes a correlation between service temperature and its impact on the microstructure evolution of TiAlN coatings.It is expected that the present multi-scale numerical simulation approach will provide innovative strategies for assisting property design and lifespan prediction of TiAlN coatings. 展开更多
关键词 Multiscale PHASE-FIELD TiAlN coatings PVD CUTTING
下载PDF
Effect of low curing temperature on the anticorrosion performance of composite coatings reinforced with modified Fe_(3)O_(4)
10
作者 CHEN Xiao-hua SUN Yi-xiang +1 位作者 MAN Cheng CUI Hong-zhi 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3435-3446,共12页
In this manuscript,the neat epoxy(EP)and functionalized Fe_(3)O_(4)(G-Fe_(3)O_(4))reinforced epoxy(G-Fe_(3)O_(4)/EP)coatings were cured under different temperatures,and the effect of the low curing temperature on the ... In this manuscript,the neat epoxy(EP)and functionalized Fe_(3)O_(4)(G-Fe_(3)O_(4))reinforced epoxy(G-Fe_(3)O_(4)/EP)coatings were cured under different temperatures,and the effect of the low curing temperature on the anticorrosion performance was investigated.The experimental results show that the epoxy-amine ring-open addition reaction mainly exists in the curing process,and the activation energies of the reaction for the two coatings are 55.84 and 53.29 kJ/mol,respectively.For the coatings cured at the low temperature,almost no pores could be detected on the fracture surface,but the presentence of the rough regions reflects the poor curing state.As compared with the samples cured at the high temperature,the anticorrosion performance of the coatings with the low curing temperature is worse,and the decrease rate of the anticorrosion performance is slower,because of the poor curing state and low adhesion obtained at the low temperature. 展开更多
关键词 low-temperature curing epoxy coating curing kinetics anticorrosion performance
下载PDF
HVOF-sprayed HAp/S53P4 BG composite coatings on an AZ31 alloy for potential applications in temporary implants
11
作者 Carlos A.Poblano-Salas John Henao +6 位作者 Astrid L.Giraldo-Betancur Paola Forero-Sossa Diego German Espinosa-Arbelaez Jorge A.González-Sánchez Luis R.Dzib-Pérez Susana T.Estrada-Moo Idelfonso E.Pech-Pech 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期345-360,共16页
Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HA... Bioactive thermal spray coatings produced via high-velocity oxygen fuel spray(HVOF)from hydroxyapatite(HAp)and bioactive glasses(BG)have the potential to be employed on temporary implants due to the ability of both HAp and BG to dissolve and promote osseointegration,considering that both phases have different reaction and dissolution rates under in-vitro conditions.In the present work,75%wt.HAp-25%wt.S53P4 bioactive glass powders were HVOF-sprayed to obtain HAp/S53P4 BG composite coatings on a bioresorbable AZ31 alloy.The study is focused on exploring the effect of the stand-off distance and fuel/oxygen ratio variation as HVOF parameters to obtain stable structural coatings and to establish their effect on the phases and microstructure produced in those coatings.Different characterization techniques,such as scanning electron microscopy,X-ray diffraction,and Fourier transform infrared spectroscopy,were employed to characterize relevant structural and microstructural properties of the composite coatings.The results showed that thermal gradients during coating deposition must be managed to avoid delamination due to the high temperature achieved(max 550℃)and the differences in coefficients of thermal expansion.It was also found that both spraying distance and oxygen/fuel ratio allowed to keep the hydroxyapatite as the main phase in the coatings.In addition,in-vitro electrochemical studies were performed on the obtained HAp/S53P4 BG composite coatings and compared against the uncoated AZ31 alloy.The results showed a significant decrease in hydrogen evolution(at least 98%)when the bioactive coating was applied on the Mg alloy during evaluation in simulated body fluid(SBF). 展开更多
关键词 coatings Composites Thermal spray Temporary implants Hydrogen evolution
下载PDF
Degradation and biocompatibility of one-step electrodeposited magnesium thioctic acid/magnesium hydroxide hybrid coatings on ZE21B alloys for cardiovascular stents
12
作者 Zhao-Qi Zhang Bing-Zhi Li +5 位作者 Pei-Duo Tong Shao-Kang Guan Li Wang Zheng-Hui Qiu Cun-Guo Lin Rong-Chang Zeng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期120-138,共19页
Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing comp... Constructing a functional hybrid coating appears to be a promising strategy for addressing the poor corrosion resistance and insufficient endothelialization of Mg-based stents.Nevertheless,the steps for preparing composite coatings are usually complicated and time-consuming.Herein,a novel composite coating,composed of bioactive magnesium thioctic acid(MTA)layer formed by deposition and corrosion-resistant magnesium hydroxide(Mg(OH)_(2))layer grown in situ,is simply fabricated on ZE21B alloys via one-step electrodeposition.Scanning electron microscopy(SEM)shows that the electrodeposited coating has a compact and uniform structure.And the high adhesion of the MTA/Mg(OH)_(2)hybrid coating is also confirmed by the micro-scratch test.Electrochemical test,scanning kelvin probe(SKP),and hydrogen evolution measurement indicate that the hybrid coating effectively reduces the degradation rate of Mg substrates.Haemocompatibility experiment and cell culture trial detect that the composite coating is of fine biocompatibility.Finally,the preparation mechanism of MTA/Mg(OH)_(2)hybrid coatings is discussed and proposed.This coating shows a great potential application for cardiovascular stents. 展开更多
关键词 Magnesium alloy Corrosion resistance Hybrid coating ENDOTHELIALIZATION BIOCOMPATIBILITY
下载PDF
Novel multifunctional epoxy based graphitic carbon nitride/silanized TiO_(2)nanocomposite as protective coatings for steel surface against corrosion and flame in the shipping industry
13
作者 XAVIER Joseph Raj 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3394-3422,共29页
The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The ... The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry. 展开更多
关键词 graphitic carbon nitride nanocomposites flame retardant coating corrosion functional materials
下载PDF
Antibacterial HA-coatings on bioresorbable Mg alloy
14
作者 K.V.Nadaraia D.V.Mashtalyar +13 位作者 M.A.Piatkova A.I.Pleshkova I.M.Imshinetskiy M.S.Gerasimenko E.A.Belov V.V.Kumeiko D.N.Kozyrev K.A.Fomenko V.V.Mostovaya B.R.Torpanov A.R.Biktimirov I.S.Osmushko S.L.Sinebryukhov S.V.Gnedenkov 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第5期1965-1985,共21页
In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S... In this study,a calcium-phosphate coating was formed on a Mg-Mn-Ce alloy by the plasma electrolytic oxidation(PEO).The antibiotic vancomycin,widely used in the treatment of infections caused by Staphylococcus aureus(S.aureus),was impregnated into the coating.Samples with vancomycin showed high bactericidal activity against S.aureus.The mechanical and electrochemical properties of the formed coatings were studied,as well as in vitro cytotoxicity tests and in vivo tests on mature male rats were performed.According to SEM,EDS,XRD and XPS data,coatings had a developed morphology and contained hydroxyapatite,which indicates high biocompatibility.The analysis of roughness of coatings without and with vancomycin did not reveal any differences,confirming the high roughness of the samples.During electrochemical tests,an increase in corrosion resistance by more than two times after the application of PEO coatings was revealed.According to the results of an in vivo study,after 28 days of the implantation of samples with calcium phosphate PEO coating and vancomycin,no signs of inflammation were observed,while an inflammatory reaction developed in the area of implantation of bare alloy,followed by encapsulation.Antibiotic release tests from the coatings show a sharp decrease in the concentration of the released antibiotic on day 7 and then a gradual decrease until day 28.Throughout the experiment,no significant deviations in the condition and behavior of the animals were observed;clinical tests did not reveal a systemic toxic reaction. 展开更多
关键词 Bioactive coatings BIOCOMPATIBILITY Mg alloy Plasma electrolytic oxidation Hydroxyapatite VANCOMYCIN
下载PDF
Structure and corrosion behavior of FeCoCrNiMo high-entropy alloy coatings prepared by mechanical alloying and plasma spraying
15
作者 Yun Tian Jianing Liu +5 位作者 Mingming Xue Dongyao Zhang Yuxin Wang Keping Geng Yanchun Dong Yong Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2692-2705,共14页
FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segrega... FeCoCrNiMox composite powders were prepared using the mechanical alloying technique and made into high-entropy alloy(HEA)coatings with the face-centered cubic phase using plasma spraying to address the element segregation problem in HEAs and pre-pare uniform HEA coatings.Scanning electron microscopy,transmission electron microscopy,and X-ray diffractometry were employed to characterize these coatings’microstructure and phase composition.The hardness,elastic modulus,and fracture toughness of coatings were tested,and the corrosion resistance was analyzed in simulated seawater.Results show that the hardness of the coating is HV0.1606.15,the modulus of elasticity is 128.42 GPa,and the fracture toughness is 43.98 MPa·m^(1/2).The corrosion potential of the coating in 3.5wt%NaCl solution is-0.49 V,and the corrosion current density is 1.2×10^(−6)A/cm^(2).The electrochemical system comprises three parts:the electrolyte,the adsorption and metallic oxide films produced during immersion,and the FeCoNiCrMo HEA coating.Over in-creasingly long periods,the corrosion reaction rate increases first and then decreases,the corrosion product film comprising metal oxides reaches a dynamic balance between formation and dissolution,and the internal reaction of the coating declines. 展开更多
关键词 high-entropy alloy coatings plasma spray mechanical alloying microstructure corrosion behavior mechanical property
下载PDF
Optical facet coatings for high-performance LWIR quantum cascade lasers atλ∼8.5μm
16
作者 MA Yuan LIN Yu-Zhe +5 位作者 WAN Chen-Yang WANG Zi-Xian ZHOU Xu-Yan ZHANG Jin-Chuan LIU Feng-Qi ZHENG Wan-Hua 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2024年第4期497-502,共6页
We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)A... We report on the performance improvement of long-wave infrared quantum cascade lasers(LWIR QCLs)by studying and optimizing the anti-reflection(AR)optical facet coating.Compared to the Al2O3 AR coat⁃ing,the Y_(2)O_(3)AR coating exhibits higher catastrophic optical mirror damage(COMD)level,and the optical facet coatings of both material systems have no beam steering effect.A 3-mm-long,9.5-μm-wide buried-heterostruc⁃ture(BH)LWIR QCL ofλ~8.5μm with Y_(2)O_(3)metallic high-reflection(HR)and AR of~0.2%reflectivity coating demonstrates a maximum pulsed peak power of 2.19 W at 298 K,which is 149%higher than that of the uncoated device.For continuous-wave(CW)operation,by optimizing the reflectivity of the Y_(2)O_(3)AR coating,the maximum output power reaches 0.73 W,which is 91%higher than that of the uncoated device. 展开更多
关键词 quantum cascade lasers long-wave infrared optical facet coatings catastrophic optical mirror damage
下载PDF
Ti3C2Tx MXene-functionalized Hydroxyapatite/Halloysite nanotube filled poly-(lactic acid)coatings on magnesium:In vitro and antibacterial applications
17
作者 Mehmet Topuz Yuksel Akinay +1 位作者 Erkan Karatas Tayfun Cetin 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3758-3771,共14页
Magnesium(Mg)stands out in temporary biomaterial applications due to its biocompatibility,biodegradability,and low Young’s modulus.However,controlling its corrosion through next-generation polymer-based functional co... Magnesium(Mg)stands out in temporary biomaterial applications due to its biocompatibility,biodegradability,and low Young’s modulus.However,controlling its corrosion through next-generation polymer-based functional coatings is crucial due to the rapid degradation behavior of Mg.In this study,the function of 2D lamellar Ti_(3)C_(2)T_(x)(MXene)in Hydroxyapatite(HA)and Halloysite nanotube(HNT)hybrid coatings in biodegradable poly-(lactic acid)(PLA)was investigated.The morphological and structural characterizations of the coatings on Mg were revealed through HRTEM,XPS,SEM-EDX,XRD,FTIR,and contact angle analyses/tests.Electrochemical in vitro corrosion tests(OCP,PDS,and EIS-Nyquist)were conducted for evaluate corrosion resistance under simulated body fluid(SBF)conditions.The bioactivity of the coatings in SBF have been revealed in accordance with the ISO 23,317 standard.Finally,antibacterial disk diffusion tests were conducted to investigate the functional effect of MXene in coatings.It has been determined that the presence of MXene in the coating increased not only surface wettability(131°,85°,77°,and 74°for uncoated,pH,PHH,and PHH/MXene coatings,respectively)but also increased corrosion resistance(1857.850,42.357,1.593,and 0.085×10^(-6),A/cm^(2) for uncoated,pH,PHH,and PHH/MXene coatings,respectively).It has been proven that the in vitro bioactivity of PLA-HA coatings is further enhanced by adding HNT and MXene,along with SEM morphologies after SBF.Finally,2D lamellar MXene-filled coating exhibits antibacterial behavior against both E.coli and S.aureus bacteria. 展开更多
关键词 MAGNESIUM Pla coating Ti3c2tx mxene In-vitro bioactivity Disk diffusion
下载PDF
Effects of plasma spraying process on microstructure and mechanical properties of Cr_(2)AlC/410 composite coatings
18
作者 Yihu Ma Chaosheng Ma +1 位作者 Guozheng Ma Wenbo Yu 《High-Speed Railway》 2024年第2期110-115,共6页
To investigate the influences of Cr_(2)AlC mass fraction and supersonic plasma spraying process on the microstructure and mechanical properties of Cr_(2)AlC reinforced 410 stainless steel composite coatings,the coatin... To investigate the influences of Cr_(2)AlC mass fraction and supersonic plasma spraying process on the microstructure and mechanical properties of Cr_(2)AlC reinforced 410 stainless steel composite coatings,the coatings containing different mass fractions of Cr_(2)AlC were prepared and investigated.The composite coating exhibited low porosity and high adhesion strength.The addition of Cr_(2)AlC significantly enhanced the hardness of the composite coatings through particle strengthening.However,when the mass fraction of Cr_(2)AlC was 20%,the aggregation of Cr_(2)AlC resulted in a strong decrease in the coating preparation efficiency,as well as a decline in adhesion strength.In the supersonic plasma spraying process,the Ar flow rate mainly influenced the flight velocity of the particles,while the H_(2) flow rate and the current mainly affected the temperature of the plasma torch.Consequently,all of them influenced the melting degree of particles and the quality of the coating.The lowest porosity and the highest hardness and adhesion strength could be obtained when the Ar flow rate is 125 L/min,the H_(2) flow rate is 25 L/min,and the current is 385 A. 展开更多
关键词 MAX phase Plasma spray PARAMETER coating
下载PDF
Comparative review of corrosion-resistant coatings on metal bipolar plates of proton exchange membrane fuel cells
19
作者 Jiaming Liu Qian Hu +3 位作者 Sandrick Sabola Yue Zhang Biao Du Xianzong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2627-2644,共18页
In the realm of proton exchange membrane fuel cells(PEMFCs),the bipolar plates(BPs)are indispensable and serve pivotal roles in distributing reactant gases,collecting current,facilitating product water removal,and coo... In the realm of proton exchange membrane fuel cells(PEMFCs),the bipolar plates(BPs)are indispensable and serve pivotal roles in distributing reactant gases,collecting current,facilitating product water removal,and cooling the stack.Metal BPs,characterized by outstanding manufacturability,cost-effectiveness,higher power density,and mechanical strength,are emerging as viable alternatives to traditional graphite BPs.The foremost challenge for metal BPs lies in enhancing their corrosion resistance and conductivity under acidic conditions,necessitating the application of various coatings on their surfaces to ensure superior performance.This review summarizes and compares recent advancements in the research of eight distinct types of coatings for BPs in PEMFCs,including noble metal,carbide,ni-tride,and amorphous carbon(a-C)/metal compound composite coatings.The various challenges encountered in the manufacturing and fu-ture application of these coatings are also delineated. 展开更多
关键词 proton exchange membrane fuel cells metallic bipolar plate coatings corrosion resistance interfacial contact resistance
下载PDF
Corrosion and antimicrobial property of TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)micro-arc oxidation coatings on Ti-6Al-4V alloys in natural seawater
20
作者 TANG Heng JIANG Quan-tong +7 位作者 XIE Rui WU Si-wei LIU Chang SUN Qiang ZHANG Xiao-ying JIN Zu-quan DUAN Ji-zhou HOU Bao-rong 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3482-3501,共20页
Microarc oxidation is an effective surface treatment for improving certain properties of metals and their alloys.In this paper,TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were prepared on Ti-6Al-4V by microarc... Microarc oxidation is an effective surface treatment for improving certain properties of metals and their alloys.In this paper,TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were prepared on Ti-6Al-4V by microarc oxidation.Thecoatings exhibited good corrosion resistance and antimicrobial properties.X-ray diffraction(XRD),scanning electronmicroscopy(SEM),and 3D laser confocal were used to characterize the coatings.The properties of TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings were analyzed,including microstructure,surface roughness,corrosion resistance,andantimicrobial properties.The electrochemical results showed that the coatings prepared by microarc oxidation hadenhanced corrosion resistance compared to the substrate.The antibacterial properties of TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coating against Pseudomonas aeruginosa were evaluated by fluorescence microscopy and plate counting.The antibacterial rate of TiO_(2)/Cu_(2)O@CeO_(2)coating was up to 99.70%.In summary,the TiO_(2)/Cu_(2)O and TiO_(2)/Cu_(2)O@CeO_(2)coatings prepared by microarc oxidation have a potential application background in the field of marine corrosionprotection and biofouling. 展开更多
关键词 antimicrobial properties micro-arc oxidation coatings Ti-6Al-4V alloy corrosion resistance
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部