Recently, considerable attention has been paid to the synthesis and research of various rare-earth (RE) doped fluoride nanomaterials because of their high refractive index and appropriate phonon energy, which have p...Recently, considerable attention has been paid to the synthesis and research of various rare-earth (RE) doped fluoride nanomaterials because of their high refractive index and appropriate phonon energy, which have potential applications in optics, optoelectronics, microelectronics, and tribology. Many methods have been utilized to synthesize the nanomaterials of RE doped fluorides with controllable sizes, shapes, and nanostructures. Comparatively, the microwave irradiation (MWI) method is simple, fast, and unique in its potential for large-scale synthesis without suffering thermal gradient effects.展开更多
基金Supported by the National Natural Science Foundation of China(Nos.10474096 and 50672030).
文摘Recently, considerable attention has been paid to the synthesis and research of various rare-earth (RE) doped fluoride nanomaterials because of their high refractive index and appropriate phonon energy, which have potential applications in optics, optoelectronics, microelectronics, and tribology. Many methods have been utilized to synthesize the nanomaterials of RE doped fluorides with controllable sizes, shapes, and nanostructures. Comparatively, the microwave irradiation (MWI) method is simple, fast, and unique in its potential for large-scale synthesis without suffering thermal gradient effects.