Al_(2)O_(3) nanoparticles and MCrAlY/nano-Al_(2)O_(3) nanocomposite powder(M=Ni,Co,or NiCo)were produced using high-energy ball milling.The MCrAlY/nano-Al_(2)O_(3) coating was deposited by selecting an optimum nanocom...Al_(2)O_(3) nanoparticles and MCrAlY/nano-Al_(2)O_(3) nanocomposite powder(M=Ni,Co,or NiCo)were produced using high-energy ball milling.The MCrAlY/nano-Al_(2)O_(3) coating was deposited by selecting an optimum nanocomposite powder as feedstock for high-velocity oxy-gen fuel thermal spraying.The morphological and microstructural examinations of the Al_(2)O_(3) nanoparticles and the commercial MCrAlY and MCrAlY/nano-Al_(2)O_(3) nanocomposite powders were investigated using X-ray diffraction analysis,field-emission scanning electron microscopy coupled with electron dispersed spectroscopy,and transmission electron microscopy.The structural investigations and Williamson-Hall res-ults demonstrated that the ball-milled Al_(2)O_(3) powder after 48 h has the smallest crystallite size and the highest amount of lattice strain among the as-received and ball-milled Al_(2)O_(3) owing to its optimal nanocrystalline structure.In the case of developing MCrAlY/nano-Al_(2)O_(3) nanocompos-ite powder,the particle size of the nanocomposite powders decreased with increasing mechanical-milling duration of the powder mixture.展开更多
With the increase in the international trade of ceramics, improvement in the physical and chemical properties of ceramics has become a market demand in recent years. The addition of nanomaterials in glaze can simultan...With the increase in the international trade of ceramics, improvement in the physical and chemical properties of ceramics has become a market demand in recent years. The addition of nanomaterials in glaze can simultaneously improve the mechanical and corrosion resistance properties of ceramics. In this study, the effect of nano-sized Ag/ZnO in glazed ceramic was investigated considering the hardness, whiteness, and microscopic structures of the products. Results showed that the Ag/ZnO nanocomposite powder significantly affects the performance of glaze. Glaze hardness reached the highest value (96.6 HV) at the low sintering temperature of 1130 ℃ with the addition of 10% Ag/ZnO nanocomposite powder. Furthermore, the Ag/ZnO nanocomposite powder improved crack resistance and whiteness. Ag as AgO and Ag2O in the glaze was effective for antibacterial activity of ceramic. In addition, the Ag/ZnO nanocomposite powder could also promote the shrinkage of bubbles in the glaze layer and smooth the glaze. These results indicated that the nanoparticles could act as an active center for melting raw materials, which is crucial for ceramic properties.展开更多
A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneousl...A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneously. It is suggested that two separate chemical reactions,i.e. Ni+Al →NiAl and Ti+2B→TiB2, are involved during the exothermic reaction. Additionof Ti and B to Ni-Al system impedes the structural evolution of Ni and Al powders and delays the abrupt reaction. The final products are equilibrium phases without any metastable phases formed. This type of reaction is suggested to be suitable for alloy systems with two large heatrelease reactions.展开更多
Fe-Ni-Y2O3 nanocomposites with uniform distribution of fine oxide particles in the gamma Fe Ni matrix were successfully fabricated via solution combustion followed by hydrogen reduction. The morphological characterist...Fe-Ni-Y2O3 nanocomposites with uniform distribution of fine oxide particles in the gamma Fe Ni matrix were successfully fabricated via solution combustion followed by hydrogen reduction. The morphological characteristics and phase transformation of the combusted powder and the Fe-Ni-Y2O3 nanocomposites were characterized by XRD, FESEM and TEM.Porous Fe-Ni-Y2O3 nanocomposites with crystallite size below 100 nm were obtained after reduction. The morphology, phases and magnetic property of Fe-Ni-Y2O3 nanocomposites reduced at different temperatures were investigated. The Fe-Ni-Y2O3 nanocomposite reduced at 900 °C has the maximum saturation magnetization and the minimum coercivity values of 167.41 A/(m2·kg)and 3.11 k A/m, respectively.展开更多
Pure Ni and its composites with different percentages of Ni-Cr nano-oxides were coated over carbon steel to assess the coating features and mechanical and corrosion behavior.A nano-oxide composite of Ni-Cr was first s...Pure Ni and its composites with different percentages of Ni-Cr nano-oxides were coated over carbon steel to assess the coating features and mechanical and corrosion behavior.A nano-oxide composite of Ni-Cr was first synthesized through chemical coprecipitation with uniform distribution constituents.Electrodeposition was employed to coat pure Ni and Ni-(Ni-Cr)oxides(10,20,30,40,and 50 g/L)on the steel sheets.Transmission electron microscope and field emission scanning electron microscope were adopted to examine the microstructure of powders and coatings,and X-ray diffraction analysis was employed to study the chemical composition.The microhardness,thickness,and wear resistance of the coatings were assessed,polarization and electrochemical impedance spectroscopy(EIS)tests were conducted to analyze the corrosion behavior,and the corresponding equivalent circuit was developed.Results showed flawless and crack-free coatings for all samples and uniform distribution of nano-oxides in the Ni matrix for the samples of 10-30 g/L.Agglomerated oxides were detected at high concentrations.Maximum microhardness(HV 661),thickness(116μm),and wear resistance of coatings were found at 30 g/L.A three-loop equivalent circuit corresponded satisfactorily to all EIS data.The corrosion resistance increased with the nano-oxide concentration of up to 30 g/L but decreased at 40 g/L.The sample of 50 g/L showed the best corrosion resistance.展开更多
WC- 10Co nanocomposite powder produced by spray pyrolysis-continuoas reduction and carbonization technology was used, and the vacuum sinteriag plus sinterhip process was cdopted to prepare ultrafine WCCo cemented carb...WC- 10Co nanocomposite powder produced by spray pyrolysis-continuoas reduction and carbonization technology was used, and the vacuum sinteriag plus sinterhip process was cdopted to prepare ultrafine WCCo cemented carbide. The microstructure, grain size, porosity, density, Rockwell A hardness ( HRA ), transverse rupture strength ( TRS ) , saturated magnetization and coercivity force were studied. The experimental results show that average grain size of the sample prepared by vacuum sintering plas sinterhip technology was about 420 nm, transverse rupture strength was more than 3460 MPa, and Rockwell A hardness of sintered specimen was more than 92.5. Ultrafine WC- 10Co cemented carbide with high strength and high hardness is obtained.展开更多
In order to understand the influence of nano-sized B4C additive on ZA27 alloy, mechanical and physical properties of ZA27-B4C nanocomposites were investigated in terms of B4C content. While physical properties were de...In order to understand the influence of nano-sized B4C additive on ZA27 alloy, mechanical and physical properties of ZA27-B4C nanocomposites were investigated in terms of B4C content. While physical properties were determined in terms of microstructural studies, density and porosity tests, mechanical properties were determined in terms of ultimate tensile strength(UTS) and hardness experiments. Morphological and microstructural studies were carried out with scanning electron microscopy(SEM). The experimental results indicate that nano-sized B4C can be used to enhance the mechanical properties of ZA27 alloy effectively. The highest mechanical performance can be obtained at ZA27-0.5% B4C(in weight) nanocomposite with values of tensile strength(247 MPa) and hardness(141,18 BH) and low partial porosity(0.5%). After a pick point, increasing B4C ratio may cause the formation of agglomeration in grain boundaries, that's why density, tensile strength, and hardness values are declined.展开更多
文摘Al_(2)O_(3) nanoparticles and MCrAlY/nano-Al_(2)O_(3) nanocomposite powder(M=Ni,Co,or NiCo)were produced using high-energy ball milling.The MCrAlY/nano-Al_(2)O_(3) coating was deposited by selecting an optimum nanocomposite powder as feedstock for high-velocity oxy-gen fuel thermal spraying.The morphological and microstructural examinations of the Al_(2)O_(3) nanoparticles and the commercial MCrAlY and MCrAlY/nano-Al_(2)O_(3) nanocomposite powders were investigated using X-ray diffraction analysis,field-emission scanning electron microscopy coupled with electron dispersed spectroscopy,and transmission electron microscopy.The structural investigations and Williamson-Hall res-ults demonstrated that the ball-milled Al_(2)O_(3) powder after 48 h has the smallest crystallite size and the highest amount of lattice strain among the as-received and ball-milled Al_(2)O_(3) owing to its optimal nanocrystalline structure.In the case of developing MCrAlY/nano-Al_(2)O_(3) nanocompos-ite powder,the particle size of the nanocomposite powders decreased with increasing mechanical-milling duration of the powder mixture.
文摘With the increase in the international trade of ceramics, improvement in the physical and chemical properties of ceramics has become a market demand in recent years. The addition of nanomaterials in glaze can simultaneously improve the mechanical and corrosion resistance properties of ceramics. In this study, the effect of nano-sized Ag/ZnO in glazed ceramic was investigated considering the hardness, whiteness, and microscopic structures of the products. Results showed that the Ag/ZnO nanocomposite powder significantly affects the performance of glaze. Glaze hardness reached the highest value (96.6 HV) at the low sintering temperature of 1130 ℃ with the addition of 10% Ag/ZnO nanocomposite powder. Furthermore, the Ag/ZnO nanocomposite powder improved crack resistance and whiteness. Ag as AgO and Ag2O in the glaze was effective for antibacterial activity of ceramic. In addition, the Ag/ZnO nanocomposite powder could also promote the shrinkage of bubbles in the glaze layer and smooth the glaze. These results indicated that the nanoparticles could act as an active center for melting raw materials, which is crucial for ceramic properties.
文摘A NiAl/TiB2 nanocomposite is synthesized by mechanical alloying elemental powders. Upon milling for a certain time, an abrupt exothermic reaction occurs and a large amount of NiAl and TiB2 compounds form simultaneously. It is suggested that two separate chemical reactions,i.e. Ni+Al →NiAl and Ti+2B→TiB2, are involved during the exothermic reaction. Additionof Ti and B to Ni-Al system impedes the structural evolution of Ni and Al powders and delays the abrupt reaction. The final products are equilibrium phases without any metastable phases formed. This type of reaction is suggested to be suitable for alloy systems with two large heatrelease reactions.
基金Project(51104007)supported by the National Natural Science Foundation of ChinaProject(2132046)supported by Beijing Natural Science Foundation,China
文摘Fe-Ni-Y2O3 nanocomposites with uniform distribution of fine oxide particles in the gamma Fe Ni matrix were successfully fabricated via solution combustion followed by hydrogen reduction. The morphological characteristics and phase transformation of the combusted powder and the Fe-Ni-Y2O3 nanocomposites were characterized by XRD, FESEM and TEM.Porous Fe-Ni-Y2O3 nanocomposites with crystallite size below 100 nm were obtained after reduction. The morphology, phases and magnetic property of Fe-Ni-Y2O3 nanocomposites reduced at different temperatures were investigated. The Fe-Ni-Y2O3 nanocomposite reduced at 900 °C has the maximum saturation magnetization and the minimum coercivity values of 167.41 A/(m2·kg)and 3.11 k A/m, respectively.
文摘Pure Ni and its composites with different percentages of Ni-Cr nano-oxides were coated over carbon steel to assess the coating features and mechanical and corrosion behavior.A nano-oxide composite of Ni-Cr was first synthesized through chemical coprecipitation with uniform distribution constituents.Electrodeposition was employed to coat pure Ni and Ni-(Ni-Cr)oxides(10,20,30,40,and 50 g/L)on the steel sheets.Transmission electron microscope and field emission scanning electron microscope were adopted to examine the microstructure of powders and coatings,and X-ray diffraction analysis was employed to study the chemical composition.The microhardness,thickness,and wear resistance of the coatings were assessed,polarization and electrochemical impedance spectroscopy(EIS)tests were conducted to analyze the corrosion behavior,and the corresponding equivalent circuit was developed.Results showed flawless and crack-free coatings for all samples and uniform distribution of nano-oxides in the Ni matrix for the samples of 10-30 g/L.Agglomerated oxides were detected at high concentrations.Maximum microhardness(HV 661),thickness(116μm),and wear resistance of coatings were found at 30 g/L.A three-loop equivalent circuit corresponded satisfactorily to all EIS data.The corrosion resistance increased with the nano-oxide concentration of up to 30 g/L but decreased at 40 g/L.The sample of 50 g/L showed the best corrosion resistance.
基金Funded by he National Natural Science Foundation of China(50502026) , Key Project for Science and Technology Developmentof Wuhan City (20041003068-04) ,andthe Key Project forthe Sci .&Tech. Research of Chinese Ministry of Education (105123)
文摘WC- 10Co nanocomposite powder produced by spray pyrolysis-continuoas reduction and carbonization technology was used, and the vacuum sinteriag plus sinterhip process was cdopted to prepare ultrafine WCCo cemented carbide. The microstructure, grain size, porosity, density, Rockwell A hardness ( HRA ), transverse rupture strength ( TRS ) , saturated magnetization and coercivity force were studied. The experimental results show that average grain size of the sample prepared by vacuum sintering plas sinterhip technology was about 420 nm, transverse rupture strength was more than 3460 MPa, and Rockwell A hardness of sintered specimen was more than 92.5. Ultrafine WC- 10Co cemented carbide with high strength and high hardness is obtained.
基金Funded by the Research Projects Unit of Karadeniz Technical(Number:12040)TUBITAK(Number:213M276)
文摘In order to understand the influence of nano-sized B4C additive on ZA27 alloy, mechanical and physical properties of ZA27-B4C nanocomposites were investigated in terms of B4C content. While physical properties were determined in terms of microstructural studies, density and porosity tests, mechanical properties were determined in terms of ultimate tensile strength(UTS) and hardness experiments. Morphological and microstructural studies were carried out with scanning electron microscopy(SEM). The experimental results indicate that nano-sized B4C can be used to enhance the mechanical properties of ZA27 alloy effectively. The highest mechanical performance can be obtained at ZA27-0.5% B4C(in weight) nanocomposite with values of tensile strength(247 MPa) and hardness(141,18 BH) and low partial porosity(0.5%). After a pick point, increasing B4C ratio may cause the formation of agglomeration in grain boundaries, that's why density, tensile strength, and hardness values are declined.