期刊文献+
共找到10,047篇文章
< 1 2 250 >
每页显示 20 50 100
Preparation and Properties of Phenolic Resin/Montmorillonite Intercalation Nanocomposites 被引量:6
1
作者 余剑英 WEILian-qi CAOXian-kum 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第4期64-67,共4页
Phenolic resin/montmorillonite intercalation composites were prepared by using the methods of pressing intercalation and melt intercalation.Properties and structure of the composites were investigated by using XRD,TG ... Phenolic resin/montmorillonite intercalation composites were prepared by using the methods of pressing intercalation and melt intercalation.Properties and structure of the composites were investigated by using XRD,TG and test of softening point.It is indicated that both the pressing intercalation and melt intercalation can be used to prepare the phenolic resin/organo-montmorillonite intercalation nanocomposites.Compared with phenolic resin,the intercalation nanocomposites have better heat-resistance,higher decomposition temperatures and less thermal weight-loss.However,these two intercalation methods have different effects on the softening point of the intercalation nanocomposites.Pressing intercalation almost does not affect the softening point of the intercalation nanocomposites,while melt intercalation significantly increases the softening point of the intercalation nanocomposites, probably due to the chemical actions happening in the process of melt intercalation. 展开更多
关键词 MONTMORILLONITE phenolic resin pressing intercalation melt intercalation nanocomposite
下载PDF
Design of Wood/Montmorillonite (MMT) Intercalation Nanocomposite 被引量:7
2
作者 LueWenhua ZhaoGuangjie 《Forestry Studies in China》 CAS 2004年第1期54-62,共9页
Studying new wood composites through nano science and technology (NSC) will develop new compounding theory of wood, and accelerate the combination of new technology, wood science, material science and other discipline... Studying new wood composites through nano science and technology (NSC) will develop new compounding theory of wood, and accelerate the combination of new technology, wood science, material science and other disciplines. The compounding of wood and inorganic MMT on nanoscale molecular level has high potential to greatly improve the mechanical properties, fire retardance, abrasion resistance, decay resistance, dimensional stability and other properties of wood. Based on the great achievements of polymer/montmorillonite (MMT) nanocomposites, this paper reviewed nano intercalation compounding methods (i.e. in-situ intercalative polymerization and direct polymer intercalation), and discussed the structure, properties and modification of montmorillonite (MMT). According to the main chemical components and particular structure of wood, the authors discussed the liquefaction and plasticization of wood, compared the dissolvability and meltability between wood and polymer, and then systematically put forward the basic idea, technological processes and schematic diagram to prepare wood/MMT nanocomposites (WMNC). The key technology to prepare WMNC is either to introduce delaminated MMT nanolayers into wood with the help of some intermediate polymers, or to obtain liquefied wood or plasticized wood from the complicated natural composite. It is applicable and effective to realize wood/MMT nanoscale compounding with the help of proper intercalation agent and medium polymer through the proposed 搊ne-step?or 搕wo-step?impregnating processes. 展开更多
关键词 WOOD Montmorillonite (MMT) nano intercalation compounding nanocompositeS
下载PDF
Modification of Nanocomposites by Melting Intercalation of Polypropylene in Montmorillonite
3
作者 王钧 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2002年第1期66-68,共3页
The polypropylene wax modified by ultraviolet irradiation. The polypropylene-montmorillonite nanocomposiles were prepared by direct melting intercalation oj polypropylene powders. The structure of polypropylene , the ... The polypropylene wax modified by ultraviolet irradiation. The polypropylene-montmorillonite nanocomposiles were prepared by direct melting intercalation oj polypropylene powders. The structure of polypropylene , the polyproprlene irradiated, montmorillinote and polypropylene-montmorillonite composites were studied by XRD, 1R and DSC. The results show that the PP molecules can are oxidized during ultraviolet irradiation , melt polypropylene can intercalate into montmorillonite layer. As a result, the layered distance ( d0.01) of montmorillonite increases, and the melt absorption peak of polypropylene in layer is eliminated. 展开更多
关键词 POLYPROPYLENE MONTMORILLONITE melt intercalation nanocompositeS
下载PDF
STUDY ON INTERCALATION MECHANISM OF GELATIN/MMT NANOCOMPOSITE
4
作者 李萍 郑俊萍 姚康德 《Transactions of Tianjin University》 EI CAS 2001年第4期294-296,共3页
A gelatin/MMT nanocomposite was prepared in an aqueous solution and investigated by XRD,FTIR and 13 C NMR,and then the intercalation mechanism was discussed.The result of XRD indicated that the gelatin molecule... A gelatin/MMT nanocomposite was prepared in an aqueous solution and investigated by XRD,FTIR and 13 C NMR,and then the intercalation mechanism was discussed.The result of XRD indicated that the gelatin molecule had already inserted into the interlayer of MMT,and the intercalation or exfoliation structure had been achieved.The result of 13 C NMR demonstrated that the ions interaction between gelatin and MMT was attributed to the driving force for intercalation.In order to confirm the role of -COO - of gelatin in the combination with MMT,lauric sodium was brought in as a model to react with MMT,and was characterized by XRD and FTIR,the result proved that there existed a kind of strong interaction between -COO - and ions of MMT. 展开更多
关键词 GELATIN MMT nanocomposite intercalation mechanism
下载PDF
DISPERSION AND TENSILE BEHAVIOR OF POLYPROPYLENE/MONTMORILLONITE NANOCOMPOSITES PRODUCED VIA MELT INTERCALATION 被引量:7
5
作者 Y.Men 傅强 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2003年第3期359-368,共10页
Most of the articles on polymer nanocomposites focus on the importance of chemistry used to modify the surface of the clay, usually montmorillonite (MMT), and characterization of the nano-scale structure obtained. The... Most of the articles on polymer nanocomposites focus on the importance of chemistry used to modify the surface of the clay, usually montmorillonite (MMT), and characterization of the nano-scale structure obtained. The role and importance of processing were also discussed recently. However, few papers concerning the correlation between morphology of MMT and mechanical properties were published. In order to understand. the tensile behavior of PP/Montmorillonite (MMT) nanocomposites better, and to further improve the reinforcement efficiency, we first prepared the PP nanocomposites via direct melt intercalation using conventional twin-screw extrusion. The dispersion and tensile property of the composites were then investigated by SEM, XRD, TEM and a video-controlled tensile set-up. The macroscopic and microscopic dispersion of MMT in PP matrix was verified by XRD and TEM, combined with SEM. The tensile properties were obtained by video-controlled tensile set-up, which gives true stress-strain curve. It was found that a partly intercalated and partly exfoliated structure (also called incomplete exfoliation) existed in the system. Though the tensile strength of PP nanocomposites is not much improved in engineering stress-strain curves, more than 20% increase of true stress was found in a true stress-strain experiment at high true strain, which indicates that only oriented silicate layers can have a big effect on tensile properties: Not only orientation of silicate platelets but also the degree of exfoliation is a key factor to determine the reinforcement efficiency. The reinforcement efficiency of MMT has been discussed based on the 'continuum' Halpin-Tsai equations. A good agreement was found between experimental data and theoretical prediction by changing N value (number of platelets per stack) which corresponding to different state of the dispersion of MMT in PP matrix. 展开更多
关键词 polypropylene/montmorillonite nanocomposites DISPERSION ORIENTATION tensile property
下载PDF
Nanocomposite Films of V_2O_5-MoO_3 Xerogel with Poly Ethylene Oxide Intercalation
6
作者 郑锦霞 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第2期35-37,共3页
Poly ethylene oxide(PEO) x-V 2O 5-MoO 3(x=0,0.5,1) films were prepared by the sol-gel method.The synthesis and structure of the films were investigated by XRD,TG-DTA,FTIR,etc.The results show that V 2O 5-MoO 3 ... Poly ethylene oxide(PEO) x-V 2O 5-MoO 3(x=0,0.5,1) films were prepared by the sol-gel method.The synthesis and structure of the films were investigated by XRD,TG-DTA,FTIR,etc.The results show that V 2O 5-MoO 3 xerogel has a layered structure and its interlayer space increased from 1.3181nm at x=0 to 1.7898nm at x=1 after the nanocomposite films were dried,and PEO in the interlayer changes the interface structure by forming hydrogen bonds with V=O bands.CV measurement indicates that the intercalation of PEO improves insertion/extration properties of Li+ ions in the interlayer. 展开更多
关键词 V 0.9Mo 0.1) 2O 5 PEO intercalation nanocomposite
下载PDF
THE NANOCOMPOSITE FILM OF POLYMER INTERCALATION IN V_2O_5 XEROGEL
7
作者 单松高 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2000年第3期1-5,共5页
The nanocomposite films were prepared by poly(ethylene oxide), PEO, intercalation in V2O5 xero-gel in sol-gel. The synthesis and state of the films are investigated by the XRD, IR, SEM, etc. The results show that V2O5... The nanocomposite films were prepared by poly(ethylene oxide), PEO, intercalation in V2O5 xero-gel in sol-gel. The synthesis and state of the films are investigated by the XRD, IR, SEM, etc. The results show that V2O5, xerogel is a layered structure which arranges in c-direction. The mterlayer distance of V2O5 xerogel increases remarkably when PEO is intercalated in V2O5 xero-gel interlayer. PEO has strong interaction with V2O5 host. The surface of the films is homogeneous without holes and cracks. 展开更多
关键词 nanocomposite film PEO intercalation V2O5 xerogel
下载PDF
Preparation of poly(propylene carbonate)/organophilic rectorite nanocomposites via direct melt intercalation 被引量:5
8
作者 万春杰 余剑英 +1 位作者 石小建 黄丽华 《中国有色金属学会会刊:英文版》 CSCD 2006年第B02期508-511,共4页
The completely degradable nanocomposites comprised of poly(propylene carbonate)(PPC) and organo-modified rectorite (OREC) were prepared by direct melt intercalation. The structure and mechanical properties of PPC/OREC... The completely degradable nanocomposites comprised of poly(propylene carbonate)(PPC) and organo-modified rectorite (OREC) were prepared by direct melt intercalation. The structure and mechanical properties of PPC/OREC nanocomposites were investigated. The wide-angle X-ray diffraction (WAXD) results show that the galleries distance of OREC is increased after PPC and OREC melt intercalation, which indicates that PPC molecular chain has intercalated into the layers of OREC. The PPC/OREC nanocomposites with lower OREC content show an increase in thermal decomposition temperature compared with pure PPC. The tensile strength and impact strength of PPC/OREC nanocomposites are improved. When the mass fraction of OREC is 4%, the tensile strength and impact strength of the PPC/OREC nanocomposite increase by 22.86% and 48.58% respectively, compared with pure PPC. 展开更多
关键词 碳酸丙二酯聚合物 亲有机物累托石 纳米复合材料 直接熔融插层法 制备
下载PDF
Application of nanotechnology to dentistry:Impact of graphene nanocomposites on clinical air quality
9
作者 Ruth Rodríguez Montaño Mario A Alarcón-Sánchez +2 位作者 Melissa Martínez Nieto Juan J Varela Hernández Sarah M LomelíMartínez 《World Journal of Clinical Cases》 SCIE 2025年第8期1-7,共7页
Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the st... Concerns about air quality in dental clinics where aerosol generation during procedures poses significant health risks,have prompted investigations on advanced disinfection technologies.This editorial describes the strengths and limitations of ventilation and aerosol control measures in dental offices,especially with respect to the use of graphene nanocomposites.The potential of graphene nanocomposites as an innovative solution to aerosol-associated health risks is examined in this review due to the unique properties of graphene(e.g.,high con-ductivity,mechanical strength,and antimicrobial activity).These properties have produced promising results in various fields,but the application of graphene in dentistry remains unexplored.The recent study by Ju et al which was published in World Journal of Clinical Cases evaluated the effectiveness of graphene-based air disinfection systems in dental clinics.The study demonstrated that graphene-based disinfection techniques produced significant reductions in suspended particulate matter and bacterial colony counts,when co-mpared with traditional methods.Despite these positive results,challenges such as material saturation,frequency of filter replacement,and associated costs must be addressed before widespread adoption of graphene-based disinfection techniques in clinical practice.Therefore,there is need for further research on material structure optimization,long-term safety evaluations,and broader clinical applications,in order to maximize their positive impact on public health. 展开更多
关键词 GRAPHENE nanocompositeS Antibacterial activity Biomedical applications Air disinfection
下载PDF
Use of graphene nanocomposites for air disinfection in dental clinics:A game-changer in infection control
10
作者 Chun-Han Cheng Wen-Rui Hao Tzu-Hurng Cheng 《World Journal of Clinical Cases》 SCIE 2025年第8期57-62,共6页
This manuscript features the promising findings of a study conducted by Ju et al,who used graphene nanocomposites for air disinfection in dental clinics.Their study demonstrated that,compared with conventional filters... This manuscript features the promising findings of a study conducted by Ju et al,who used graphene nanocomposites for air disinfection in dental clinics.Their study demonstrated that,compared with conventional filters,graphene nanocom-posites substantially improved air quality and reduced microbial contamination.This manuscript highlights the innovative application of graphene materials,emphasizing their potential to enhance dental clinic environments by minimizing secondary pollution.On the basis of the unique antimicrobial properties of gra-phene and the original study’s rigorous methodology,we recommend using gra-phene nanocomposites in clinical settings to control airborne infections. 展开更多
关键词 Graphene nanocomposites Air disinfection Dental clinics Antimicrobial properties Secondary pollution
下载PDF
Layered Potassium Titanium Niobate/Reduced Graphene Oxide Nanocomposite as a Potassium‑Ion Battery Anode 被引量:5
11
作者 Charlie A.F.Nason Ajay Piriya Vijaya Kumar Saroja +3 位作者 Yi Lu Runzhe Wei Yupei Han Yang Xu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期1-16,共16页
With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes ... With graphite currently leading as the most viable anode for potassium-ion batteries(KIBs),other materials have been left relatively underexamined.Transition metal oxides are among these,with many positive attributes such as synthetic maturity,longterm cycling stability and fast redox kinetics.Therefore,to address this research deficiency we report herein a layered potassium titanium niobate KTiNbO5(KTNO)and its rGO nanocomposite(KTNO/rGO)synthesised via solvothermal methods as a high-performance anode for KIBs.Through effective distribution across the electrically conductive rGO,the electrochemical performance of the KTNO nanoparticles was enhanced.The potassium storage performance of the KTNO/rGO was demonstrated by its first charge capacity of 128.1 mAh g^(−1) and reversible capacity of 97.5 mAh g^(−1) after 500 cycles at 20 mA g^(−1),retaining 76.1%of the initial capacity,with an exceptional rate performance of 54.2 mAh g^(−1)at 1 A g^(−1).Furthermore,to investigate the attributes of KTNO in-situ XRD was performed,indicating a low-strain material.Ex-situ X-ray photoelectron spectra further investigated the mechanism of charge storage,with the titanium showing greater redox reversibility than the niobium.This work suggests this lowstrain nature is a highly advantageous property and well worth regarding KTNO as a promising anode for future high-performance KIBs. 展开更多
关键词 Potassium-ion batteries intercalation Transition metal oxides Anodes nanocomposite
下载PDF
Preparation of the Thermoplastic Starch/Montmorillonite Nanocomposites by Melt-intercalation
12
作者 MingFuHUANC JiuGaoYU XiaoFeiMA 《Chinese Chemical Letters》 SCIE CAS CSCD 2005年第4期561-564,共4页
In this paper, the conception of melt-intercalation was introduced into the natural polymer field, and the thermoplastic starch/ethanolamine-activated montmorillonite (TPS/EMMT) nanocomposites were prepared by extru... In this paper, the conception of melt-intercalation was introduced into the natural polymer field, and the thermoplastic starch/ethanolamine-activated montmorillonite (TPS/EMMT) nanocomposites were prepared by extruding the composites of EMMT and TPS, plasticized with ethanolamine/formamide. Wide angle X-ray diffraction (WAXD) and transmission electron microscope (TEM) revealed that TPS was intercalated into the layers of EMMT successfully and formed the intercalation nanocomposites with EMMT. When EMMT content was wt.10%, the mechanical testing indicated that the tensile stress of the nanocomposites reached 9.69 MPa, and the tensile strain reached 74.07%, Youngs modulus increased from the 47.23 MPa of TPS to 184.11 MPa of TPS/EMMT nanocomposites, and breaking energy increased from 1.34 N·m to 2.15 N·m after they had been stored at RH25% for 14 days. 展开更多
关键词 Thermoplastic starch MONTMORILLONITE nanocompositeS ethanolamine.
下载PDF
Efficacy of graphene nanocomposites for air disinfection in dental clinics: A randomized controlled study 被引量:2
13
作者 Ya-Qiong Ju Xiang-Hua Yu +3 位作者 Jing Wu Ying-Hui Hu Xiang-Yong Han Dan Fang 《World Journal of Clinical Cases》 SCIE 2024年第28期6173-6179,共7页
BACKGROUND Aerosols containing disease-causing microorganisms are produced during oral diagnosis and treatment can cause secondary contamination.AIM To investigate the use of graphene material for air disinfection in ... BACKGROUND Aerosols containing disease-causing microorganisms are produced during oral diagnosis and treatment can cause secondary contamination.AIM To investigate the use of graphene material for air disinfection in dental clinics by leveraging its adsorption and antibacterial properties.METHODS Patients who received ultrasonic cleaning at our hospital from April 2023 to April 2024.They were randomly assigned to three groups(n=20 each):Graphene nanocomposite material suction group(Group A),ordinary filter suction group(Group B),and no air suction device group(Group C).The air quality and air colony count in the clinic rooms were assessed before,during,and after the procedure.Additionally,bacterial colony counts were obtained from the air outlets of the suction devices and the filter screens in Groups A and B.RESULTS Before ultrasonic cleaning,no significant differences in air quality PM2.5 and colony counts were observed among the three groups.However,significant differences in air quality PM2.5 and colony counts were noted among the three groups during ultrasonic cleaning and after ultrasonic treatment.Additionally,the number of colonies on the exhaust port of the suction device and the surface of the filter were significantly lower in Group A than in Group B(P=0.000 and P=0.000,respectively).CONCLUSION Graphene nanocomposites can effectively sterilize the air in dental clinics by exerting their antimicrobial effects and may be used to reduce secondary pollution. 展开更多
关键词 GRAPHENE nanocompositeS Oral clinic Air disinfection Secondary contamination
下载PDF
Lightweight Dual‑Functional Segregated Nanocomposite Foams for Integrated Infrared Stealth and Absorption‑Dominant Electromagnetic Interference Shielding 被引量:2
14
作者 Zhonglei Ma Ruochu Jiang +8 位作者 Jiayao Jing Songlei Kang Li Ma Kefan Zhang Junxian Li Yu Zhang Jianbin Qin Shuhuan Yun Guangcheng Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期38-55,共18页
Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and hig... Lightweight infrared stealth and absorption-dominant electromagnetic interference(EMI)shielding materials are highly desirable in areas of aerospace,weapons,military and wearable electronics.Herein,lightweight and high-efficiency dual-functional segregated nanocomposite foams with microcellular structures are developed for integrated infrared stealth and absorption-dominant EMI shielding via the efficient and scalable supercritical CO_(2)(SC-CO_(2))foaming combined with hydrogen bonding assembly and compression molding strategy.The obtained lightweight segregated nanocomposite foams exhibit superior infrared stealth performances benefitting from the synergistic effect of highly effective thermal insulation and low infrared emissivity,and outstanding absorption-dominant EMI shielding performances attributed to the synchronous construction of microcellular structures and segregated structures.Particularly,the segregated nanocomposite foams present a large radiation temperature reduction of 70.2℃ at the object temperature of 100℃,and a significantly improved EM wave absorptivity/reflectivity(A/R)ratio of 2.15 at an ultralow Ti_(3)C_(2)T_(x) content of 1.7 vol%.Moreover,the segregated nanocomposite foams exhibit outstanding working reliability and stability upon dynamic compression cycles.The results demonstrate that the lightweight and high-efficiency dual-functional segregated nanocomposite foams have excellent potentials for infrared stealth and absorption-dominant EMI shielding applications in aerospace,weapons,military and wearable electronics. 展开更多
关键词 Segregated nanocomposite foams Microcellular structures Infrared stealth EMI shielding Low infrared emissivity
下载PDF
A Generic Strategy to Create Mechanically Interlocked Nanocomposite/Hydrogel Hybrid Electrodes for Epidermal Electronics 被引量:1
15
作者 Qian Wang Yanyan Li +7 位作者 Yong Lin Yuping Sun Chong Bai Haorun Guo Ting Fang Gaohua Hu Yanqing Lu Desheng Kong 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期120-133,共14页
Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composite... Stretchable electronics are crucial enablers for next-generation wearables intimately integrated into the human body.As the primary compliant conductors used in these devices,metallic nanostructure/elastomer composites often struggle to form conformal contact with the textured skin.Hybrid electrodes have been consequently developed based on conductive nanocomposite and soft hydrogels to establish seamless skin-device interfaces.However,chemical modifications are typically needed for reliable bonding,which can alter their original properties.To overcome this limitation,this study presents a facile fabrication approach for mechanically interlocked nanocomposite/hydrogel hybrid electrodes.In this physical process,soft microfoams are thermally laminated on silver nanowire nanocomposites as a porous interface,which forms an interpenetrating network with the hydrogel.The microfoam-enabled bonding strategy is generally compatible with various polymers.The resulting interlocked hybrids have a 28-fold improved interfacial toughness compared to directly stacked hybrids.These electrodes achieve firm attachment to the skin and low contact impedance using tissue-adhesive hydrogels.They have been successfully integrated into an epidermal sleeve to distinguish hand gestures by sensing mus-cle contractions.Interlocked nanocomposite/hydrogel hybrids reported here offer a promising platform to combine the benefits of both materials for epidermal devices and systems. 展开更多
关键词 Stretchable electronics Epidermal electronics Silver nanowire Conductive nanocomposites HYDROGEL
下载PDF
Bio-inspired Hydroxyapatite/Gelatin Transparent Nanocomposites
16
作者 谭军军 WU Mingchen +2 位作者 LI Yuzhe PENG Jiamei 熊焰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期298-308,共11页
Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/ge... Hydroxyapatite(HA)nanoparticles impart outstanding mechanical properties to organicinorganic nanocomposites in bone.Inspired by the composite structure of HA nanoparticles and collagen in bone,a high performance HA/gelatin nanocomposite was first developed.The nanocomposites have much better mechanical properties(elongation at break 29.9%,tensile strength 90.7 MPa,Young’s modulus 5.24 GPa)than pure gelatin films(elongation at break 9.3%,tensile strength 90.8 MPa,Young’s modulus 2.5 GPa).In addition,the composite films keep a high transmittance in visible wavelength range from 0%to 60%of the HA solid content.These differences in properties are attributed to the homogeneous distribution of HA nanoparticles in the gelatin polymer matrix and the strong interaction between the particle surfaces and the gelatin molecules.This protocol should be promising for HA-based nanocomposites with enhanced mechanical properties for biomedical applications. 展开更多
关键词 HYDROXYAPATITE nanocompositeS sodium citrate GELATIN colloidal stability
下载PDF
Increasing the toughness while reducing the viscosity of carbon nanotube/ polyether imide/polyether ether ketone nanocomposites
17
作者 SONG Jiu-peng ZHAO Yan +3 位作者 LI Xue-kuan XIONG Shu LI Shuang WANG Kai 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期715-728,共14页
Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether im... Polyether ether ketone(PEEK)has good mechanical properties.However,its high viscosity when molten limits its use because it is hard to process.PEEK nanocomposites containing both carbon nanotubes(CNTs)and polyether imide(PEI)were pre-pared by a direct wet powder blending method using a vertical injection molding machine.The addition of an optimum amount of PEI lowered the viscosity of the molten PEEK by approximately 50%while producing an increase in the toughness of the nanocom-posites,whose strain to failure increased by 129%,and fracture energy increased by 97%.The uniformly dispersed CNT/PEI powder reduced the processing difficulty of PEEK nanocomposites without affecting the thermal resistance.This improvement of the strength and viscosity of PEEK facilitate its use in the preparation of thermoplastic composites. 展开更多
关键词 nanocompositeS Mechanical properties Rheological properties Microstructural analysis
下载PDF
Using Electrodeposition of Carboxylated Chitosan for Green Preparation of Copper Nanoclusters and Nanocomposite Films
18
作者 ZHANG Xiaoli LI Tingxue +4 位作者 WANG Qinghua YANG Yan ZHANG Chenyu LIU Yaning WANG Yifeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第6期1348-1357,共10页
On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient ... On the basis of coordinated electrodeposition of carboxylated chitosan(CCS),we presented a green method to prepare Cu NCs and Cu NCs/CCS nanocomposite films.The method shows a range of benefits,such as the convenient and eco-friendly process,mild conditions,and simple post-treatment.The experimental results reveal that a homogeneous deposited film(Cu NCs/CCS nanocomposite film)is generated on the Cu plate(the anode)after electrodeposition,which exhibits an obvious red florescence.The results from TEM observation suggest there are nanoparticles(with the average particle size of 2.3 nm)in the deposited film.Spectral analysis results both demonstrate the existence of Cu NCs in the deposited film.Moreover,the Cu NCs/CCS film modified electrode is directly created through electrodeposition of CCS,which enables promising application in the electrochemical sensing.By means of fluorescence properties of Cu NCs,the Cu NCs/CCS film also owns the potential in fluorescence detection.Therefore,this work builds a novel method for the green synthesis of Cu NCs,meanwhile it offers a convenient and new electrodeposition strategy to prepare polysaccharide-based Cu NCs nanocomposites for uses in functional nanocomposites and bioelectronic devices. 展开更多
关键词 nanocomposite films copper nanoclusters ELECTRODEPOSITION carboxylated chitosan POLYSACCHARIDES
下载PDF
Novel multifunctional epoxy based graphitic carbon nitride/silanized TiO_(2)nanocomposite as protective coatings for steel surface against corrosion and flame in the shipping industry
19
作者 XAVIER Joseph Raj 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3394-3422,共29页
The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The ... The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry. 展开更多
关键词 graphitic carbon nitride nanocomposites flame retardant coating corrosion functional materials
下载PDF
Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning
20
作者 Xingzi Yang Wei Gao +1 位作者 Xiaodu Wang Xiaowei Zeng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1299-1313,共15页
The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performa... The bioinspired nacre or bone structure represents a remarkable example of tough,strong,lightweight,and multifunctional structures in biological materials that can be an inspiration to design bioinspired high-performance materials.The bioinspired structure consists of hard grains and soft material interfaces.While the material interface has a very low volume percentage,its property has the ability to determine the bulk material response.Machine learning technology nowadays is widely used in material science.A machine learning model was utilized to predict the material response based on the material interface properties in a bioinspired nanocomposite.This model was trained on a comprehensive dataset of material response and interface properties,allowing it to make accurate predictions.The results of this study demonstrate the efficiency and high accuracy of the machine learning model.The successful application of machine learning into the material property prediction process has the potential to greatly enhance both the efficiency and accuracy of the material design process. 展开更多
关键词 Bioinspired nanocomposite computational model machine learning finite element material interface
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部