期刊文献+
共找到552篇文章
< 1 2 28 >
每页显示 20 50 100
Long-term corrosion behavior of HVOF sprayed FeCrSiBMn amorphous/nanocrystalline coating 被引量:5
1
作者 秦玉娇 吴玉萍 +3 位作者 张建峰 郭文敏 洪晟 陈丽艳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1144-1150,共7页
A FeCrSiBMn amorphous/nanocrystalline coating with 700 μm in thickness and 0.65% in porosity, was prepared by high velocity oxygen fuel(HVOF) spraying process. The long-term corrosion behavior of the FeCrSiBMn coatin... A FeCrSiBMn amorphous/nanocrystalline coating with 700 μm in thickness and 0.65% in porosity, was prepared by high velocity oxygen fuel(HVOF) spraying process. The long-term corrosion behavior of the FeCrSiBMn coating was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) tests in a 3.5% NaCl solution with a hard chromium coating as a reference. The FeCrSiBMn coating exhibited higher corrosion potential and lower corrosion current density than the hard chromium coating. The pore resistance(Rp) and charge transfer resistance(Rct) of FeCrSiBMn coating were higher than those of the hard chromium coating. In addition, after immersion in the Na Cl solution for 28 d, only small pores in the FeCrSiBMn coating were observed. All the results indicated that the FeCrSiBMn coating held superior corrosion resistance to the hard chromium coating. This could be attributed to the dense structure, low porosity and amorphous/nanocrystalline phases of the FeCrSiBMn coating. 展开更多
关键词 HVOF spraying coATING Fe-based amorphous/nanocrystalline corrosion resistance
下载PDF
Atomic force microscope study of WC-10Co cemented carbide sintered from nanocrystalline composite powders 被引量:2
2
作者 Xiaoliang Shi Gangqin Shao Xinglong Duan Runzhang Yuan 《Journal of University of Science and Technology Beijing》 CSCD 2005年第6期558-563,共6页
In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distributi... In order to compare the spark plasma sintedng (SPS) process plus hot isostatic press (HIP) with vacuum sintedng plus HIP, an investigation was carried out on the topography, microstructure and gain size distribution of nanocrystalline WC-10Co composite powder and the sintered specimens prepared by SPS plus HIP and by vacuum sintering plus HIP by means of atomic force microscopy (AFM). The mechanical properties of the sintered specimens were also investigated. It is very easy to find cobalt lakes in the specimen prepared by vacuum sintering plus HIP process. But the microstructure of the specimen prepared by SPS plus HIP is more homogeneous, and the grain size is smaller than that prepared by vacuum sintering plus HIP. The WC-10Co ultrafine cemented carbide consolidated by SPS plus HIP can reach a relative density of 99.4%, and the transverse rupture strength (TRS) is higher than 3540 MPa, the Rockwell A hardness (HRA) is higher than 92.8, the average grain size is smaller than 300 nm, and the WC-10Co ultrafine cemented carbide with excellent properties is achieved. The specimen prepared by SPS with HIP has better properties and microstructure than that prepared by vacuum sintering with HIP. 展开更多
关键词 WC-10co nanocrystalline composite powder atomic force microscopy (AFM) spark plasma sintering (SPS) hot isostatic pressing (HIP)
下载PDF
EFFECT OF MICROSTRUCTURE CHANGE ON OXIDE FORMATION OF SPUTTERED Ni-3Cr-10Al NANOCRYSTALLINE COATING
3
作者 G.F. Chen and H Y Lou(State Key Laboratory for Corrosion and Protection, lnstitute of Corrosion and Protection of Metals, The Chinese Academy of Sciences, Shenyang 110015, China) 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1999年第6期0-0,0-0,共4页
The microstructure change of sputtered Ni-3Cr-10Al nanocrystalline coating during oxidation in air at 900°C was observed and its eNct on oxide formation on the sputtered coating was studied. Twe results indicated... The microstructure change of sputtered Ni-3Cr-10Al nanocrystalline coating during oxidation in air at 900°C was observed and its eNct on oxide formation on the sputtered coating was studied. Twe results indicated that Ni3Al was segmpated during oxidation, on which Nio could be easily formcd. NiO could react with the trunsient γ-Al2O3 to form NiAl2O4 through solid reaction, whtch can be found on the oxide scale afer 200h oxidation. Thewtre, the oxide scale formed on sputtered Ni-3Cr10Al coating was not composed of a unltary layer of Al2 O3. Thc Al2O3 and NiAl2 O4 complex oxide scale bonded properly with substrate and showed gpod adhesion and good oxidation resistance. 展开更多
关键词 OXIDATION Ni-3Cr-10Al nanocrystalline coating
下载PDF
HOT CORROSION BEHAVIOR OF K38G ALLOY AND ITS SPUTTERED NANOCRYSTALLINE COATING BY PRE-DEPOSITED SULFATE AT 900℃
4
作者 S.J. Geng Fuhui Wang +1 位作者 S.L. Zhu W.T. Wu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2002年第1期119-122,共4页
The sputtered nanocrystalline coating of K38G alloy was obtained by magnetron sput-tering. The hot corrosion behaviors of cast K38G alloy and its sputtered nanocrys-talline coating by pre-deposited 75wt%Na2SO4+25wt%K2... The sputtered nanocrystalline coating of K38G alloy was obtained by magnetron sput-tering. The hot corrosion behaviors of cast K38G alloy and its sputtered nanocrys-talline coating by pre-deposited 75wt%Na2SO4+25wt%K2SO4 at 900℃ were studied. The results indicated the occurrence of internal sulfidation in the cast K38G alloy with pre-deposited sulfattes of 0.8 and 3.0mg/cm2. However, the internal sulfidation was not observed in the coating with pre-deposited 0.8mg/cm2 sulfate. The hot corrosion resistance of K38G alloy was clearly enhanced through nanocrystallinzation, although the internal sulfides were still formed for the coating with sulfate deposit of 3mg/cm2. The relevant hot corrosion mechanism was also discussed. 展开更多
关键词 K38G sputtered nanocrystalline coating hot corrosion
下载PDF
Molybdenum based amorphous and nanocrystalline coatings prepared by high velocity oxy-fuel spraying 被引量:3
5
作者 Fan, Zishuan Yu, Hongying Wang, Xudong 《Rare Metals》 SCIE EI CAS CSCD 2012年第4期355-361,共7页
The high velocity oxy-fuel(HVOF) based thermal spray process has developed as a potential advantageous approach for fabricating various kinds of functional coatings.In this article,the coatings of Mo-based alloy were ... The high velocity oxy-fuel(HVOF) based thermal spray process has developed as a potential advantageous approach for fabricating various kinds of functional coatings.In this article,the coatings of Mo-based alloy were synthesized using the HVOF process.The microstructure and the mechanical properties of the HVOF-processed coatings were investigated using SEM,TEM,XRD,and hardness and wear tests.Annealing treatment was applied to the as-sprayed coatings to develop the microstructure and its effect on the microstructure and mechanical properties of the coatings was examined.It is found that the HVOF-processed Mo-based alloy coatings are comprised of an amorphous splat matrix embedded with nano-sized crystalline particles.Annealing at temperatures over 950 ℃ results into crystallization of the amorphous matrix.The mechanical properties of the as-sprayed coatings are enhanced with annealing temperature up to 750 ℃ and from 950 to 1050 ℃,keeps constant between 750 and 950 ℃,and reduce over 1050 ℃.The change of the mechanical property with the microstructure was illustrated in the study. 展开更多
关键词 molybdenum based alloy coating amorphous and nanocrystalline phases hardness and tribology anealling high velocity oxy-fuel spraying
下载PDF
Synthesis,Characterization and Electromagnetic Studies on Nanocrystalline Co_(0.5)Zn_(0.5)Fe_2O_4 Synthesized by Polyacrylamide Gel 被引量:2
6
作者 Ruiting MA Yanwen TIAN +2 位作者 Haitao ZHAO Gang ZHANG Hui ZHAO 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第4期628-632,共5页
Nanocrystalline Co0.5Zn0.5Fe2O4 ferrite was synthesized by polyacrylamide gel method. The electromagnetic and microwave absorption properties of the ferrite were investigated. The results indicated that calcining temp... Nanocrystalline Co0.5Zn0.5Fe2O4 ferrite was synthesized by polyacrylamide gel method. The electromagnetic and microwave absorption properties of the ferrite were investigated. The results indicated that calcining temperature of the ferrite had a significant influence on the effective properties of the ferrite. When the calcining temperature was 500, 600 and 700℃, the average size of particles was 10, 30 and 80 nm, respectively. The dielectric loss (ε″) and magnetic loss (μ″) of the ferrite was around 0.65 and 0.29 at 8.2 GHz, respectively. Microwave absorption properties of the ferrites were simultaneously influenced due to the strong correlation between reflection loss and electromagnetic parameters of the ferrite. 展开更多
关键词 Polyacrylamide gel nanocrystalline co0.5Zn0.5Fe2O4 Electromagnetic properties
下载PDF
Effect of stress state on deformation and fracture of nanocrystalline copper:Molecular dynamics simulation 被引量:1
7
作者 张亮 吕程 +2 位作者 Kiet Tieu 裴林清 赵星 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期488-495,共8页
Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducte... Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal, bicrystal and polycrystal respectively, under two different tension boundary conditions. Simulations are first conducted on the bicrystal and polycrystal models without lattice imperfection. The results reveal that, compared with the performance of simulation models under free boundary condition, the transverse stress caused by the constrained boundary condition leads to a much higher tensile stress and can severely limit the plastic deformation, which in return promotes cleavage fracture in the model. Simulations are then performed on Cu single crystal and polycrystal with an initial crack. Under constrained boundary condition, the crack tip propagates rapidly in the single crystal in a cleavage manner while the crack becomes blunting and extends along the grain boundaries in the polycrystal. Under free boundary condition, massive dislocation activities dominate the deformation mechanisms and the crack plays a little role in both single crystals and polycrystals. 展开更多
关键词 molecular dynamics nanocrystalline stress state deformation mechanism
下载PDF
Hydroxyapatite/alumina nanocrystalline composite powders synthesized by sol–gel process for biomedical applications
8
作者 S.Khors M.H.Fathi +1 位作者 S.Salehi S.Amirkhanlou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第10期1033-1036,共4页
Hydroxyapatite/alumina nanocrystalline composite powders needed for various biomedical applications were successfully synthe- sized by sol-gel process. Structural and morphological investigations of the prepared compo... Hydroxyapatite/alumina nanocrystalline composite powders needed for various biomedical applications were successfully synthe- sized by sol-gel process. Structural and morphological investigations of the prepared composite powders were performed using X-ray dif- fractometer (XRD), scanning electron microscopy (SEM), X'Pert HighScore software, and Clemex Vision image analysis software. The re- suits show that the crystallite size of the obtained composite powders is in the range of 25 to 90 nm. SEM evaluation shows that the obtained composite powders have a porous structure, which is very useful for biomedical applications. The spherical nanoparticles in the range of 60 to 800 nm are embedded in the agglomerated clusters of the prepared composite powders. 展开更多
关键词 nanocrystalline materials BIOMATERIALS HYDROXYAPATITE ALUMINA sol-gel process nanostructures
下载PDF
Oxide formation on sputtered Ni-3Cr-10Al nanocrystalline coating
9
作者 CHEN Guo feng(陈国锋) LOU Han yi(楼翰一) 《中国有色金属学会会刊:英文版》 CSCD 2000年第3期397-400,共4页
The oxide formation on the sputtered Ni 3Cr 10Al nanocrystalline coating at 900 ℃ and 1 000 ℃ in air has been studied. The results indicated that an oxide scale composed of NiAl 2O 4 and Al 2O 3 was formed on the sp... The oxide formation on the sputtered Ni 3Cr 10Al nanocrystalline coating at 900 ℃ and 1 000 ℃ in air has been studied. The results indicated that an oxide scale composed of NiAl 2O 4 and Al 2O 3 was formed on the sputtered Ni 3Cr 10Al nanocrystalline coating whereas a unitary Al 2O 3 scale was not formed even when the Al content was high in the sputtered coating. The formation of NiAl 2O 4 was directly related to the precipitation of Ni 3Al in the coating during oxidation process. It was suggested that the precipitation of Ni 3Al contributed to the formation of NiO and therefore NiO could react with Al 2O 3 and form NiAl 2O 4. With increasing oxidation temperature, the effect of Ni 3Al precipitation on the formation of NiAl 2O 4 decreased. 展开更多
关键词 NI 3Cr 10Al SPUTTERING nanocrystalline coATING OXIDATION
下载PDF
Stabilization of Nanocrystalline Copper by Tantalum Grain Boundary Segregation
10
作者 Sufeng Wei Xinming Hu +1 位作者 Xianglei Liu Guoyong Wang 《Open Journal of Physical Chemistry》 2021年第3期157-167,共11页
Nanocrystalline Cu-Ta alloy films were deposited on glass slides by magnetron sputtering. Microstructure characterization proved that most of the tantalum atoms are segregated in the grain boundaries. Nanoindentation ... Nanocrystalline Cu-Ta alloy films were deposited on glass slides by magnetron sputtering. Microstructure characterization proved that most of the tantalum atoms are segregated in the grain boundaries. Nanoindentation creep measurements were performed on it to uncover the stability mechanism of grain boundary segregation on nanocrystalline materials. It is found that segregation can effectively slow down the creep strain rate and the grain boundary activities. The suppressed grain boundary activities endow the alloy with a stable microstructure during plastic deformation and annealing. 展开更多
关键词 nanocrystalline SEGREGATION CREEP NANOINDENTATION Grain Growth Annealing
下载PDF
Retarding the effect of Ta on high-temperature oxidation of sputtered nanocrystalline coatings
11
作者 Bo Meng Lanlan Yang +4 位作者 Qunchang Wang Jinlong Wang Minghui Chen Shenglong Zhu Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第17期195-206,共12页
The presence of excess Ta in high-temperature protective coatings can compromise the integrity of the Al_(2)O_(3)scale on the surface,which has a negative impact on the oxidation behavior and reduces the service life.... The presence of excess Ta in high-temperature protective coatings can compromise the integrity of the Al_(2)O_(3)scale on the surface,which has a negative impact on the oxidation behavior and reduces the service life.The effects of oxygen doping on the isothermal oxidation of three sputtered nanocrystalline coatings were investigated at 1100°C.The results indicated that oxygen doping inhibited the diffusion of Ta from the coating to the oxide scale,which was primarily attributed to the preferential oxidation of the Al in the coating.However,excess oxygen doping decreased the amount of Al available for the formation of the Al_(2)O_(3)scale on the coating,thus reducing the inhibitory effect on Ta oxidation.Moreover,doping with excess O caused spalling of the oxide scale.Therefore,the right balance in O doping is crucial for suppressing Ta oxidation while maintaining the integrity of the oxide scale. 展开更多
关键词 High-temperature oxidation Oxygen doping nanocrystalline coating Ta-rich phase Residual stress
原文传递
Correlation of microstructure and magnetic softness of Si-microalloying FeNiBCuSi nanocrystalline alloy revealed by nanoindentation
12
作者 Benjun Wang Wenjun Liu +9 位作者 Li Liu Yu Wang Yu Hang Xinyu Wang Mengen Shi Hanchen Feng Long Hou Chenchen Yuan Zhong Li Weihuo Li 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第12期351-359,共9页
Compared to the commercial soft-magnetic alloys,the high saturation magnetic flux density(Bs)and low coercivity(Hc)of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of ... Compared to the commercial soft-magnetic alloys,the high saturation magnetic flux density(Bs)and low coercivity(Hc)of post-developed novel nanocrystalline alloys tend to realize the miniaturization and lightweight of electronic products,thus attracting great attention.In this work,we designed a new FeNiBCuSi formulation with a novel atomic ratio,and the microstructure evolution and magnetic softness were investigated.Microstructure analysis revealed that the amount of Si prompted the differential chemical fluctuations of Cu element,favoring the different nucleation and growth processes ofα-Fe nanocrystals.Furthermore,microstructural defects associated with chemical heterogeneities were unveiled using the Maxwell-Voigt model with two Kelvin units and one Maxwell unit based on creeping analysis by nanoindentation.The defect,with a long relaxation time in relaxation spectra,was more likely to induce the formation of crystal nuclei that ultimately evolved into theα-Fe nanocrystals.As a result,Fe_(84)Ni_(2)B_(12.5)Cu_(1)Si_(0.5)alloy with refined uniform nanocrystalline microstructure exhibited excellent magnetic softness,including a high B_(s)of 1.79 T and very low H_(c)of 2.8 A/m.Our finding offers new insight into the influence of activated defects associated with chemical heterogeneities on the microstructures of nanocrystalline alloy with excellent magnetic softness. 展开更多
关键词 nanocrystalline alloy magnetic softness MICROSTRUCTURES defects NANOINDENTATION
下载PDF
Quasi-plastic deformation mechanisms and inverse Hall-Petch relationship in nanocrystalline boron carbide under compression
13
作者 岳珍 李君 +1 位作者 刘立胜 梅海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期405-413,共9页
Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes usi... Grain boundaries(GBs)play a significant role in the deformation behaviors of nanocrystalline ceramics.Here,we investigate the compression behaviors of nanocrystalline boron carbide(nB_(4)C)with varying grain sizes using molecular dynamics simulations with a machine-learning force field.The results reveal quasi-plastic deformation mechanisms in nB_(4)C:GB sliding,intergranular amorphization and intragranular amorphization.GB sliding arises from the presence of soft GBs,leading to intergranular amorphization.Intragranular amorphization arises from the interaction between grains with unfavorable orientations and the softened amorphous GBs,and finally causes structural failure.Furthermore,nB_(4)C models with varying grain sizes from 4.07 nm to 10.86 nm display an inverse Hall-Petch relationship due to the GB sliding mechanism.A higher strain rate in nB_(4)C often leads to a higher yield strength,following a 2/3 power relationship.These deformation mechanisms are critical for the design of ceramics with superior mechanical properties. 展开更多
关键词 nanocrystalline boron carbide compression grain boundary sliding amorphization inverse Hall–Petch behavior
下载PDF
A plastic iron-based nanocrystalline alloy with high saturation magnetic flux density and low coercivity via flexible-annealing
14
作者 Xuesong Li Rongce Sun +9 位作者 Dongyang Li Chengyue Song Jing Zhou Zhiyong Xue Chuntao Chang Baoan Sun Bo Zhang Haibo Ke Weihua Wang Haiyang Bai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第23期229-235,共7页
The traditional high-temperature annealing process is difficult to control the morphology and size of the crystallization phases in amorphous alloy systems with high ferromagnetic element content,lead-ing to mechanica... The traditional high-temperature annealing process is difficult to control the morphology and size of the crystallization phases in amorphous alloy systems with high ferromagnetic element content,lead-ing to mechanical brittleness and soft magnetic properties deterioration.Here,we developed a flexible-annealing technique and successfully achieved a fine nanocrystalline structure in a high-ferromagnetic-content system of(Fe_(0.8)Co_(0.2))_(85)Si_(2)B_(12)Cu_(0.8)Mo_(0.2).It is exciting that the(Fe_(0.8)Co_(0.2))_(85)Si_(2)B_(12)Cu_(0.8)Mo_(0.2) nanocrystalline alloy exhibits high Bs up to 1.88 T,low coercivity of 6.3 A m-1,as well as good plas-ticity.The excellent comprehensive properties are attributed to the controllable construction of di-luted amorphous-nanocrystalline structure,the rapid release of internal stress,and the suppression of relaxation-induced uniformity achieved by the flexible annealing process.The results provide a fast and new paradigm for the development of next-generation high-Bs soft magnetic materials. 展开更多
关键词 nanocrystalline alloy Flexible annealing High saturation magnetic flux density Low coercivity PLASTIC
原文传递
Enhancement of bending toughness for Fe-based amorphous nanocrystalline alloy with deep cryogenic-cycling treatment
15
作者 Yi-ran Zhang Dong Yang +5 位作者 Qing-chun Xiang Hong-yu Liu Jing Pang Ying-lei Ren Xiao-yu Li Ke-qiang Qiu 《China Foundry》 2025年第1期99-107,共9页
The effects of deep cryogenic-cycling treatment(DCT)on the mechanical properties,soft magnetic properties,and atomic scale structure of the Fe_(73.5)Si_(13.5)B_(9)Nb_(3)Cu_(1)amorphous nanocrystalline alloy were inves... The effects of deep cryogenic-cycling treatment(DCT)on the mechanical properties,soft magnetic properties,and atomic scale structure of the Fe_(73.5)Si_(13.5)B_(9)Nb_(3)Cu_(1)amorphous nanocrystalline alloy were investigated.The DCT samples were obtained by subjecting the as-annealed samples to a thermal cycling process between the temperature of the supercooled liquid zone and the temperature of liquid nitrogen.Through flat plate bending testing,hardness measurements,and nanoindentation experiment,it is found that the bending toughness of the DCT samples is improved and the soft magnetic properties are also slightly enhanced.These are attributed to the rejuvenation behavior of the DCT samples,which demonstrate a higher enthalpy of relaxation.Therefore,DCT is an effective method to enhance the bending toughness of Fe-based amorphous nanocrystalline alloys without degrading the soft magnetic properties. 展开更多
关键词 deep cryogenic-cycling treatment Fe-based amorphous nanocrystalline alloy bending toughness REJUVENATION
下载PDF
Phase evolution of plasma sprayed Al_2O_3-13%TiO_2 coatings derived from nanocrystalline powders 被引量:2
16
作者 路学成 阎殿然 +3 位作者 杨勇 董艳春 何继宁 张建新 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第10期2951-2956,共6页
Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granu... Commercial nanosized alumina and titania particles were selected as raw materials to prepare the blended slurry with composition of A1203-13%TiO2 (mass fraction), which were reconstituted into micrometer-sized granules by spray drying, subsequently sintering at different temperatures to form nanostructured feedstock for thermal spraying, and then A1203-13%TiO2 nanocoatings were deposited by plasma spraying. The evolution of morphology, microstructure, and phase transformation of the agglomerated powder and as-sprayed coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that A1203 retains the same a phase as the raw material during sintering, while TiO2 changes from anatase to futile. During plasma spraying, some a-A1203 phases solidify to form metastable y-A1203, and the volume fraction of a-A1203 decreases as CPSP increases. However, peaks of the TiO2 phase are not observed from the as-sprayed coatings except for the coatings sprayed at the lower CPSP. As the CPSP increases, nanostructured TiO2 is dissolved easily in y-A1203 or z-A1203'TiO2 phase. After heat treatment, y-A1203 in the coatings transforms to a-A1203, and rutile is precipitated. 展开更多
关键词 A1203-13%TiO2 nanocrystalline powder NANOcoATINGS phase evolution
下载PDF
Influence of Sputtered Nanocrystalline Coating on Oxidation and Hot Corrosion of a Nickel-based Superalloy M951 被引量:9
17
作者 Xinyue Wang Li Xin +3 位作者 Fuhui Wang Shenglong Zhu Hua Wei Xiaolan Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2014年第9期867-877,共11页
The isothermal and cyclic oxidation behaviors in air and hot corrosion behaviors in Na2SO4 + 25 wt% K2SO4 salt of M951 cast superalloy and a sputtered nanocrystalline coating of the same material were studied. Scanni... The isothermal and cyclic oxidation behaviors in air and hot corrosion behaviors in Na2SO4 + 25 wt% K2SO4 salt of M951 cast superalloy and a sputtered nanocrystalline coating of the same material were studied. Scanning electron microscopy, energy dispersive X-ray spectroscope, X-ray diffraction, and transmission electron microscopy were employed to examine the morphologies and phase composition of the M951 alloy and nanocrystalline coating before and after oxidation and hot corrosion. The as-sputtered nanocrystalline layer has a homogeneous y phase structure of very fine grain size (30-200 nm) with the preferential growth texture of (111) parallel to the interface. Adherent AI203 rich oxide scale formed on the cast M951 alloy and its sputtered coating after isothermal oxidation at 900 and 1000 ℃. However, when being isothermal oxidized at 1100℃ and cyclic oxidized at 1000 ℃, the oxide scale formed on the cast alloy was a mixture of NiO, NiAl2O4, Al2O3 and Nb205 and spalled seriously, while that formed on the sputtered coating mainly consisted of Al2O3 and was very adherent. Nanocrystallization promoted rapid formation of Al2O3 scale during the early stage of oxidation and enhanced the adhesion of the oxide scale, thus improved the oxidation resistance of the substrate alloy. Serious corrosion occurred for the cast alloy. The sputtered nanocrystalline coating apparently improved the hot corrosion resistance of the cast alloy in the mixed sulfate by the formation of a continuous Al2O3 and Cr2O3 mixed oxide layer on the surface of the coating, and the pre- oxidation treatment of the coating led to an even better effect. 展开更多
关键词 M951 alloy Sputtered nanocrystalline coating OXIDATION corrosion PRE-OXIDATION
原文传递
Co-based Amorphous/Nanocrystalline Composite Coatings Deposited by Arc Ion Plating 被引量:1
18
作者 Zhengkai Chang Jun Gong Chao Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2013年第9期806-812,共7页
Cobalt-based amorphous/nanocrystalline composite coatings have been grown by arc ion plating together with a specimen cooling system. With decreasing substrate temperature, the coatings undergo significant structure e... Cobalt-based amorphous/nanocrystalline composite coatings have been grown by arc ion plating together with a specimen cooling system. With decreasing substrate temperature, the coatings undergo significant structure evolution. The degree of crystallization first decreases and subsequently increases as confirmed by X-ray diffraction. The cluster size first decreases and then remains constant as confirmed by transmission electron microscopy. The effect of substrate temperature on the evolution of the structure has been studied as a result of a competition between nucleation thermodynamics and kinetics of crystalline growth. With decreasing the substrate temperature, the microhardness and the critical load of the composite coatings firstly increased, and then remained almost constant. And the saturation magnetization revealed the opposite trend over the same range. The essence of these phenomena was ascribed to the microstructural variations caused by the decrease of the substrate temperature. 展开更多
关键词 Amorphous/nanocrystalline composite coatings Arc ion plating THERMODYNAMICS KINETICS MICROHARDNESS Critical load
原文传递
On the rumpling mechanism in nanocrystalline coatings:Improved by reactive magnetron sputtering with oxygen 被引量:1
19
作者 Bo Meng Jinlong Wang +3 位作者 Lanlan Yang Minghui Chen Shenglong Zhu Fuhui Wang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第1期69-80,共12页
Surface rumpling is detrimental to high temperature protective coatings as it shortens their lifetime and leads to adhesion losses and unexpected corrosion degradation.The driving force and mass transport mechanism be... Surface rumpling is detrimental to high temperature protective coatings as it shortens their lifetime and leads to adhesion losses and unexpected corrosion degradation.The driving force and mass transport mechanism behind of rumpling remains to be clarified.In the present investigation,we subjected two types of nanocrystalline coating systems to avoid the influence of interdiffusion on rumpling study.One group was an ordinary nanocrystalline coating,and the other group was designed and prepared with trace oxygen by reactive magnetron sputtering.Systematic cyclic oxidation test at 1100°C was also car-ried out.Results show the ordinary nanocrystalline coating oxidized rapidly,which leads to the fast consumption of Al and the acceleration of phase transition in the coating.Meanwhile,severe surface rumpling is observed due to the stress release of nanocrystals through plastic deformation.Besides,the reactive doping of oxygen can significantly reduce the consumption process of Al in nanocrystalline coat-ing.The rumpling is controlled due to the improvement of coefficient of thermal expansion and Young’s modulus of the coating.Thereafter,the cyclic oxidation resistance is improved. 展开更多
关键词 High temperature oxidation Thermal cycling oxidation Surface rumpling nanocrystalline coating Residual stress
原文传递
Fabrication and characterization of electrodeposited nanocrystalline Ni-Fe alloys for NiFe_2O_4 spinel coatings
20
作者 马莉 张龙 +2 位作者 李小斌 李志友 周科朝 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第1期146-153,共8页
Nanocrystalline Ni-Fe FCC alloy coatings with Fe content of 1.3%-39%(mass fraction) were fabricated on the nickel substrates using a DC electrodeposition technique. The crystal structure, lattice strain, grain size ... Nanocrystalline Ni-Fe FCC alloy coatings with Fe content of 1.3%-39%(mass fraction) were fabricated on the nickel substrates using a DC electrodeposition technique. The crystal structure, lattice strain, grain size and lattice constant of the Ni-Fe alloy coatings were studied by X-ray diffraction technique. The chemical composition and surface morphology of the FCC Ni-Fe alloy coatings were investigated with the energy dispersive X-ray spectroscopy(EDS) and atomic force microscopy(AFM). The results show that the Fe content of the Ni-Fe alloy coatings has a great influence on the preferred orientation, grain size, lattice constant and lattice strain. FCC Ni-Fe alloy coatings exhibit preferred orientations of(200) or(200)(111). With an increase of Fe content, the preferred growth orientation of(200) plane is weakened gradually, while the preferred growth orientation of(111) increases. An increase of the Fe content in the range of 1.3%-25%(mass fraction) results in a significant grain refinement of the coatings. Increasing the Fe content beyond 25% does not decrease the grain size of FCC Ni-Fe alloys further. The lattice strain increases with increasing the Fe content in the FCC Ni-Fe alloys. Since the alloys with Fe content not less than 25% has similar grain size(~11 nm), the increase in the lattice strain with the increase of Fe content cannot be attributed to the change in the grain size. 展开更多
关键词 Ni-Fe alloy ELECTRODEPOSITION nanocrystalline NiFe2O4 spinel coATING
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部