期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Impact of nitrogen doping on growth and hydrogen impurity incorporation of thick nanocrystalline diamond films
1
作者 顾利萍 唐春玖 +1 位作者 江学范 J.L.Pinto 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第5期433-438,共6页
A much larger amount of bonded hydrogen was found in thick nanocrystalline diamond (NCD) films produced by only adding 0.24% N2 into 4% CH4/H2 plasma, as compared to the high quality transparent microcrystalline dia... A much larger amount of bonded hydrogen was found in thick nanocrystalline diamond (NCD) films produced by only adding 0.24% N2 into 4% CH4/H2 plasma, as compared to the high quality transparent microcrystalline diamond (MCD) films, grown using the same growth parameters except for nitrogen. These experimental results clearly evidence that defect formation and impurity incorporation (for example, N and H) impeding diamond grain growth is the main formation mechanism of NCD upon nitrogen doping and strongly support the model proposed in the literature that nitrogen competes with CHx (x = 1, 2, 3) growth species for adsorption sites. 展开更多
关键词 thick nanocrystalline diamond films nitrogen doping crystalline quality
下载PDF
Fabrication and characteristics of nitrogen-doped nanocrystalline diamond/p-type silicon heterojunction 被引量:3
2
作者 D.Lu H.D.Li +2 位作者 S.H.Cheng J.J.Yuan X.Y.Lv 《Nano-Micro Letters》 SCIE EI CAS 2010年第1期56-59,共4页
Nitrogen-doped nanocrystalline diamond films(N-NDFs)have been deposited on p-type silicon(Si)by microwave plasma chemical vapor deposition.The reaction gases are methane,hydrogen,and nitrogen without the conventional ... Nitrogen-doped nanocrystalline diamond films(N-NDFs)have been deposited on p-type silicon(Si)by microwave plasma chemical vapor deposition.The reaction gases are methane,hydrogen,and nitrogen without the conventional argon(Ar).The N-NDFs were characterized by X-ray diffraction,Raman spectroscopy,and scanning electron microscopy.The grain sizes are of 8~10 nm in dimension.The N-NDF shows n-type behavior and the corresponding N-NDF/p-Si heterojunction diodes are realized with a high rectification ratio of 102 at^7.8 V,and the current density reaches to1.35 A/cm2 at forward voltage of 8.5 V.The findings suggest that fabricated by CH_4/H_2/N_2 without Ar,the N-NDFs and the related rectifying diodes are favorable for achieving high performance diamond-based optoelectronic devices. 展开更多
关键词 nanocrystalline diamond film Chemical vapor deposition Nitrogen doped Heterojunction diodes Current-voltage characteristics
下载PDF
Nanodiamond films deposited at moderate temperature on pure titanium substrate pretreated by ultrasonic scratching in diamond powder suspension
3
作者 Syed Jawid Askari Fanxiu Lv +3 位作者 Akhtar Farid Fengying Wang Qi He Zuyuan Zhou 《Journal of University of Science and Technology Beijing》 CSCD 2006年第6期542-545,共4页
Nanocrystalline diamond (NCD) film deposition on pure titanium and Ti alloys is extraordinarily difficult because of the high diffusion coefficient of carbon in Ti, the large mismatch in their thermal expansion coef... Nanocrystalline diamond (NCD) film deposition on pure titanium and Ti alloys is extraordinarily difficult because of the high diffusion coefficient of carbon in Ti, the large mismatch in their thermal expansion coefficients, the complex nature of the interlayer formed during diamond deposition, and the difficulty to achieve very high nucleation density. In this investigation, NCD films were successfully deposited on pure Ti substrate by using a novel substrate pretreatment of ultrasonic scratching in a diamond powder-ethanol suspension and by a two-step process at moderate temperature. It was shown that by scratching with a 30-μm diamond suspension for 1 h, followed by a 10-h diamond deposition, a continuous NCD film was obtained with an average grain size of about 200 nm. Detailed experimental results on the preparation, characterization, and successful deposition of the NCD films on Ti were discussed. 展开更多
关键词 nanocrystalline diamond film pure Ti substrate nucleation enhancement moderate temperature
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部