Morphology-controlled synthesis of copper vanadate nanocrystals is of great significance in electrochemical sensing applications.A facile hydrothermal process for synthesizing copper vanadate nanocrystals with various...Morphology-controlled synthesis of copper vanadate nanocrystals is of great significance in electrochemical sensing applications.A facile hydrothermal process for synthesizing copper vanadate nanocrystals with various morphologies(e.g.,nanoparticles,nanobelts and nanoflowers)was reported.Phase,morphology and electrochemical performance of the as-synthesized copper vanadate nanocrystals were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM)and cyclic-voltammogram(CV)techniques.The results revealed that the morphologies of the Cu3V2O7(OH)2·2H2O(CVOH)nanocrystals could be controlled by changing copper salts,surfactants and pH values.The CVOH samples showed enhanced electrochemical response to ascorbic acid.Comparatively,the CVOH nanobelts had the higher electrochemical sensing performance than those of CVOH nanoparticles and nanoflowers.The CVOH-nanobelts-modified GCEs had a linear relationship between the peak currents in their CVs and ascorbic acid concentration.The CVOH nanocrystals can be used as potential electrochemical active materials for the determination of ascorbic acid.展开更多
Noble metal-based electrocatalysts present high activities for methanol oxidation reaction(MOR),but are limited by their high cost,low stability and poor resistance to carbon monoxide(CO) poisoning.The development of ...Noble metal-based electrocatalysts present high activities for methanol oxidation reaction(MOR),but are limited by their high cost,low stability and poor resistance to carbon monoxide(CO) poisoning.The development of active and stable non-noble metal electrocatalysts for MOR is desired,but remains a challenge.Herein,we report a simple strategy to make copper nanocrystal/nitrogen-doped carbon(Cu/N-C)monoliths,which can serve as active and robust electrodes for MOR.Copper nanocrystals were electrochemically deposited onto a conductive polyaniline hydrogel and calcined to form Cu/N-C monolith,where the active copper nanocrystals are protected by nitrogen-doped carbon.Owing to their extremely high electrical conductivity(1.25 × 10^(5) S cm^(-1)) and mechanical robustness,these Cu/N-C monoliths can be directly used as electrodes for MOR,without using substrates or additives.The optimal Cu/N-C(FT)@500 monolith shows a high MOR activity of 189 mA cm^(-2) at 0.6 V vs.SCE in alkaline methanol solution,superior to most of reported Cu-based MOR catalysts.Cu/N-C(FT)@500 also presents a better stability than Pt/C catalyst in the long-term MOR test at high current densities.Upon carbon monoxide(CO) poisoning,Cu/N-C(FT)@500 retains 96% of its MOR activity,far exceeding the performance of Pt/C catalyst(61% retention).Owing to its facile synthesis,outstanding activity,high stability and mechanical robustness,Cu/N-C(FT)@500 monolith is promising as a low-cost,efficient and CO-resistant electrocatalyst for MOR.展开更多
Moolooite particles with flaky morphology were synthesized by mixing dilute solutions of copper nitrate and sodium oxalate in the presence of citric acid. Solution p H value, citric acid concentration, and stirring we...Moolooite particles with flaky morphology were synthesized by mixing dilute solutions of copper nitrate and sodium oxalate in the presence of citric acid. Solution p H value, citric acid concentration, and stirring were found to have large effect on the shape of the precipitated particles. Under the stirring, the radial area of flaky moolooite particles was enlarged and extended to become a thinner and larger flake. This is ascribed to growth promotion caused by the selective absorption of citric ligands onto a particular crystalline surface of the moolooite particles. Flaky shape of the moolooite particles tended to become spherical and disappeared completely when decomposed under an Ar atmosphere, leading to the formation of large porous aggregated particles composed of many tiny nanosized copper crystals.展开更多
Cellulose nanofibers(CNF)are considered to be a potential substrate of energy material for energy storage devices due to the foldable,lightweight,recyclable and environmentally friendly feature.However,the energy mate...Cellulose nanofibers(CNF)are considered to be a potential substrate of energy material for energy storage devices due to the foldable,lightweight,recyclable and environmentally friendly feature.However,the energy materials tend to distribute unevenly or fall off from CNF easily,resulting in the decrease of the devices’overall performance.Here,for the first time,we used quaternized chitosan(QCS)as stabilizer and adhesive to in situ synthesize and deposite copper sulfide nanocrystals(CuS-NCs)on CNF and further obtained the conductive paper for flexible supercapacitors.In the presence of QCS,CuS-NCs deposited in situ on CNF can be capped and stabilized by the QCS molecular chains for uniform distribution,which is conducive to the capacitive behavior and electrochemical stability of composite paper.The result shows that the specific capacitance of the composite paper was as high as 314.3 F/g at a current density of 1 A/g,a high rate capacitance of 252.6 F/g was achieved even at a high current density of 10 A/g.It reveals that the composite paper exhibited better electrochemical performance than many other CuS-based electrode materials for supercapacitor.More importantly,the composite paper performed well in various folding state without changing much electrochemical performance.Therefore,this work provides a novel strategy to in situ fabricate paper-based electrode for nextgeneration flexible energy-storage system.展开更多
基金Projects(51404213,51404214,51574205,51172211)supported by the National Natural Science Foundation of ChinaProjects(14HASTIT011,154100510003)supported by the Program for University Science and Technology Innovation Talents of Henan Province,China+1 种基金Projects(2013M531682,2014T70682)supported by the China Postdoctoral Science FundProject(1421324065)supported by the Development Fund for Outstanding Young Teachers of Zhengzhou University,China
文摘Morphology-controlled synthesis of copper vanadate nanocrystals is of great significance in electrochemical sensing applications.A facile hydrothermal process for synthesizing copper vanadate nanocrystals with various morphologies(e.g.,nanoparticles,nanobelts and nanoflowers)was reported.Phase,morphology and electrochemical performance of the as-synthesized copper vanadate nanocrystals were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM)and cyclic-voltammogram(CV)techniques.The results revealed that the morphologies of the Cu3V2O7(OH)2·2H2O(CVOH)nanocrystals could be controlled by changing copper salts,surfactants and pH values.The CVOH samples showed enhanced electrochemical response to ascorbic acid.Comparatively,the CVOH nanobelts had the higher electrochemical sensing performance than those of CVOH nanoparticles and nanoflowers.The CVOH-nanobelts-modified GCEs had a linear relationship between the peak currents in their CVs and ascorbic acid concentration.The CVOH nanocrystals can be used as potential electrochemical active materials for the determination of ascorbic acid.
基金supported by the National Natural Science Foundation of China(21722406,21975240,21676258)by the Fundamental Research Funds for the Central Universities(WK2060190102)+1 种基金by the Central Leading Local Science and Technology Development Special Fund Project(YDZX20191400002636)by the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi(STIP 2020L0695)。
文摘Noble metal-based electrocatalysts present high activities for methanol oxidation reaction(MOR),but are limited by their high cost,low stability and poor resistance to carbon monoxide(CO) poisoning.The development of active and stable non-noble metal electrocatalysts for MOR is desired,but remains a challenge.Herein,we report a simple strategy to make copper nanocrystal/nitrogen-doped carbon(Cu/N-C)monoliths,which can serve as active and robust electrodes for MOR.Copper nanocrystals were electrochemically deposited onto a conductive polyaniline hydrogel and calcined to form Cu/N-C monolith,where the active copper nanocrystals are protected by nitrogen-doped carbon.Owing to their extremely high electrical conductivity(1.25 × 10^(5) S cm^(-1)) and mechanical robustness,these Cu/N-C monoliths can be directly used as electrodes for MOR,without using substrates or additives.The optimal Cu/N-C(FT)@500 monolith shows a high MOR activity of 189 mA cm^(-2) at 0.6 V vs.SCE in alkaline methanol solution,superior to most of reported Cu-based MOR catalysts.Cu/N-C(FT)@500 also presents a better stability than Pt/C catalyst in the long-term MOR test at high current densities.Upon carbon monoxide(CO) poisoning,Cu/N-C(FT)@500 retains 96% of its MOR activity,far exceeding the performance of Pt/C catalyst(61% retention).Owing to its facile synthesis,outstanding activity,high stability and mechanical robustness,Cu/N-C(FT)@500 monolith is promising as a low-cost,efficient and CO-resistant electrocatalyst for MOR.
基金financially supported by the Fundamental Research Funds for the Central Universities of China (FRF-BD-15-004A)
文摘Moolooite particles with flaky morphology were synthesized by mixing dilute solutions of copper nitrate and sodium oxalate in the presence of citric acid. Solution p H value, citric acid concentration, and stirring were found to have large effect on the shape of the precipitated particles. Under the stirring, the radial area of flaky moolooite particles was enlarged and extended to become a thinner and larger flake. This is ascribed to growth promotion caused by the selective absorption of citric ligands onto a particular crystalline surface of the moolooite particles. Flaky shape of the moolooite particles tended to become spherical and disappeared completely when decomposed under an Ar atmosphere, leading to the formation of large porous aggregated particles composed of many tiny nanosized copper crystals.
基金This work was financially supported by this work was supported by State Key Laboratory of Pulp and Paper Engineering(No.2020ZR05)the National Natural Science Foundation of China(No.31622044)the project from and the Fundamental Research Funds for the Central Universities(No.2020ZYGXZR066).
文摘Cellulose nanofibers(CNF)are considered to be a potential substrate of energy material for energy storage devices due to the foldable,lightweight,recyclable and environmentally friendly feature.However,the energy materials tend to distribute unevenly or fall off from CNF easily,resulting in the decrease of the devices’overall performance.Here,for the first time,we used quaternized chitosan(QCS)as stabilizer and adhesive to in situ synthesize and deposite copper sulfide nanocrystals(CuS-NCs)on CNF and further obtained the conductive paper for flexible supercapacitors.In the presence of QCS,CuS-NCs deposited in situ on CNF can be capped and stabilized by the QCS molecular chains for uniform distribution,which is conducive to the capacitive behavior and electrochemical stability of composite paper.The result shows that the specific capacitance of the composite paper was as high as 314.3 F/g at a current density of 1 A/g,a high rate capacitance of 252.6 F/g was achieved even at a high current density of 10 A/g.It reveals that the composite paper exhibited better electrochemical performance than many other CuS-based electrode materials for supercapacitor.More importantly,the composite paper performed well in various folding state without changing much electrochemical performance.Therefore,this work provides a novel strategy to in situ fabricate paper-based electrode for nextgeneration flexible energy-storage system.