Colorectal cancer(CRC)is a form of cancer that is often resistant to chemotherapy,targeted therapy,radiotherapy,and immunotherapy due to its genomic instability and inflammatory tumor microenvironment.Ferroptosis,a ty...Colorectal cancer(CRC)is a form of cancer that is often resistant to chemotherapy,targeted therapy,radiotherapy,and immunotherapy due to its genomic instability and inflammatory tumor microenvironment.Ferroptosis,a type of non-apoptotic cell death,is characterized by the accumulation of iron and the oxidation of lipids.Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells.Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance.Moreover,the gut,responsible for regulating iron absorption and release,could influence CRC susceptibility through iron metabolism modulation.Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management,potentially revolutionizing treatment approaches for therapy-resistant cancers.展开更多
Targeting androgen receptor(AR)has shown great therapeutic potential in triple-negative breast cancer(TNBC),yet its efficacy remains unsatisfactory.Here,we aimed to identify promising targeted agents that synergize wi...Targeting androgen receptor(AR)has shown great therapeutic potential in triple-negative breast cancer(TNBC),yet its efficacy remains unsatisfactory.Here,we aimed to identify promising targeted agents that synergize with enzalutamide,a second-generation AR inhibitor,in TNBC.By using a strategy for screening drug combinations based on the Sensitivity Index(SI),we found that MK-8776,a selective checkpoint kinase1(CHK1)inhibitor,showed favorable synergism with enzalutamide in AR-positive TNBC.The combination of enzalutamide and MK-8776 was found to exert more significant anti-tumor effects in TNBC than the single application of enzalutamide or MK-8776,respectively.Furthermore,a nanoparticle-based on hyaluronic acid(HA)-modified hollow-manganese dioxide(HMnO_(2)),named HMnE&M@H,was established to encapsulate and deliver enzalutamide and MK-8776.This HA-modified nanosystem managed targeted activation via pH/glutathione responsiveness.HMnE&M@H repressed tumor growth more obviously than the simple addition of enzalutamide and MK-8776 without a carrier.Collectively,our study elucidated the synergy of enzalutamide and MK-8776 in TNBC and developed a novel tumor-targeted nano drug delivery system HMnE&M@H,providing a potential therapeutic approach for the treatment of TNBC.展开更多
Lipid nanoemulsions are promising nanodrug delivery carriers that can improve the efficacy and safety of paclitaxel(PTX).However,no intravenous lipid emulsion of PTX has been approved for clinical treatment,and system...Lipid nanoemulsions are promising nanodrug delivery carriers that can improve the efficacy and safety of paclitaxel(PTX).However,no intravenous lipid emulsion of PTX has been approved for clinical treatment,and systemic safety profiles have not yet been reported.Here we outline the development of a PTXloaded tumor-targeting intravenous lipid emulsion(PTX Emul)and describe its characteristics,colloidal stability,and systemic safety profiles in terms of acute toxicity,long-term toxicity,and toxicokinetics.We also compare PTX Emul with conventional PTX injection.Results showed that PTX Emul exhibited an ideal average particle size(approximately 160 nm)with narrow size distribution and robust colloidal stability under different conditions.Hypersensitivity reaction and hemolysis tests revealed that PTX Emul did not induce hypersensitivity reactions and had no hemolytic potential.In addition,where the alleviated systemic toxicity of PTX Emul may be attributed to the altered toxicokinetic characteristics in beagle dogs,including the decreased AUC and increased plasma clearance and volume of distribution,PTX Emul alleviated acute and long-term toxicity as evidenced by the enhanced the median lethal dose and approximate lethal dose,moderate body weight change,decreased bone marrow suppression and organ toxicity compared with those under PTX injection at the same dose.A fundamental understanding of the systemic safety profiles,high tumor-targeting efficiency,and superior antitumor activity in vivo of PTX Emul can provide powerful evidence of its therapeutic potential as a future treatment for breast cancer.展开更多
Cancer stem cells(CSCs)are a small proportion of the cells that exist in cancer tissues.They are considered to be the culprit of tumor genesis,development,drug resistance,metastasis and recurrence because of their sel...Cancer stem cells(CSCs)are a small proportion of the cells that exist in cancer tissues.They are considered to be the culprit of tumor genesis,development,drug resistance,metastasis and recurrence because of their self-renewal,proliferation,and differentiation potential.The elimination of CSCs is thus the key to cure cancer,and targeting CSCs provides a new method for tumor treatment.Due to the advantages of controlled sustained release,targeting and high biocompatibility,a variety of nanomaterials are used in the diagnosis and treatments targeting CSCs and promote the recognition and removal of tumor cells and CSCs.This article mainly reviews the research progress of nanotechnology in sorting CSCs and nanodrug delivery systems targeting CSCs.Furthermore,we identify the problems and future research directions of nanotechnology in CSC therapy.We hope that this review will provide guidance for the design of nanotechnology as a drug carrier so that it can be used in clinic for cancer therapy as soon as possible.展开更多
High-density lipoproteins(HDL) are naturally-occurring nanoparticles that are biocompatible,non-immunogenic and completely biodegradable. These endogenous particles can circulate for an extended period of time and tra...High-density lipoproteins(HDL) are naturally-occurring nanoparticles that are biocompatible,non-immunogenic and completely biodegradable. These endogenous particles can circulate for an extended period of time and transport lipids, proteins and micro RNA from donor cells to recipient cells.Based on their intrinsic targeting properties, HDL are regarded as promising drug delivery systems. In order to produce on a large scale and to avoid blood borne pollution, reconstituted high-density lipoproteins(rHDL) possessing the biological properties of HDL have been developed. This review summarizes the biological properties and biomedical applications of rHDL as drug delivery platforms. It focuses on the emerging approaches that have been developed for the generation of biomimetic nanoparticles rHDL to overcome the biological barriers to drug delivery, aiming to provide an alternative,promising avenue for efficient targeting transport of nanomedicine.展开更多
文摘Colorectal cancer(CRC)is a form of cancer that is often resistant to chemotherapy,targeted therapy,radiotherapy,and immunotherapy due to its genomic instability and inflammatory tumor microenvironment.Ferroptosis,a type of non-apoptotic cell death,is characterized by the accumulation of iron and the oxidation of lipids.Studies have revealed that the levels of reactive oxygen species and glutathione in CRC cells are significantly lower than those in healthy colon cells.Erastin has emerged as a promising candidate for CRC treatment by diminishing stemness and chemoresistance.Moreover,the gut,responsible for regulating iron absorption and release,could influence CRC susceptibility through iron metabolism modulation.Investigation into ferroptosis offers new insights into CRC pathogenesis and clinical management,potentially revolutionizing treatment approaches for therapy-resistant cancers.
基金supported by the Key INTERNATIONAL COOPERATION of the National Natural Science Foundation of China(No.81920108029,China)the Key Foundation for Social Development Project of the Jiangsu Province,China(No.BE2021741,China).
文摘Targeting androgen receptor(AR)has shown great therapeutic potential in triple-negative breast cancer(TNBC),yet its efficacy remains unsatisfactory.Here,we aimed to identify promising targeted agents that synergize with enzalutamide,a second-generation AR inhibitor,in TNBC.By using a strategy for screening drug combinations based on the Sensitivity Index(SI),we found that MK-8776,a selective checkpoint kinase1(CHK1)inhibitor,showed favorable synergism with enzalutamide in AR-positive TNBC.The combination of enzalutamide and MK-8776 was found to exert more significant anti-tumor effects in TNBC than the single application of enzalutamide or MK-8776,respectively.Furthermore,a nanoparticle-based on hyaluronic acid(HA)-modified hollow-manganese dioxide(HMnO_(2)),named HMnE&M@H,was established to encapsulate and deliver enzalutamide and MK-8776.This HA-modified nanosystem managed targeted activation via pH/glutathione responsiveness.HMnE&M@H repressed tumor growth more obviously than the simple addition of enzalutamide and MK-8776 without a carrier.Collectively,our study elucidated the synergy of enzalutamide and MK-8776 in TNBC and developed a novel tumor-targeted nano drug delivery system HMnE&M@H,providing a potential therapeutic approach for the treatment of TNBC.
基金supported by the National Science and Technology Major Project of China(Grant No.:2018ZX09711001)Beijing Nova Program(Grant No.:Z211100002121127)+2 种基金Beijing Natural Science Foundation(Grant No.:L212059)Fundamental Research Funds for the Central Universities(Grant No.:3332021101)CAMS Innovation Fund for Medical Sciences(CIFMS,Grant No.:2022-I2M-JB-011).
文摘Lipid nanoemulsions are promising nanodrug delivery carriers that can improve the efficacy and safety of paclitaxel(PTX).However,no intravenous lipid emulsion of PTX has been approved for clinical treatment,and systemic safety profiles have not yet been reported.Here we outline the development of a PTXloaded tumor-targeting intravenous lipid emulsion(PTX Emul)and describe its characteristics,colloidal stability,and systemic safety profiles in terms of acute toxicity,long-term toxicity,and toxicokinetics.We also compare PTX Emul with conventional PTX injection.Results showed that PTX Emul exhibited an ideal average particle size(approximately 160 nm)with narrow size distribution and robust colloidal stability under different conditions.Hypersensitivity reaction and hemolysis tests revealed that PTX Emul did not induce hypersensitivity reactions and had no hemolytic potential.In addition,where the alleviated systemic toxicity of PTX Emul may be attributed to the altered toxicokinetic characteristics in beagle dogs,including the decreased AUC and increased plasma clearance and volume of distribution,PTX Emul alleviated acute and long-term toxicity as evidenced by the enhanced the median lethal dose and approximate lethal dose,moderate body weight change,decreased bone marrow suppression and organ toxicity compared with those under PTX injection at the same dose.A fundamental understanding of the systemic safety profiles,high tumor-targeting efficiency,and superior antitumor activity in vivo of PTX Emul can provide powerful evidence of its therapeutic potential as a future treatment for breast cancer.
基金Natural Science Foundation of Nanjing University of Chinese Medicine China,No.XZR2020093.
文摘Cancer stem cells(CSCs)are a small proportion of the cells that exist in cancer tissues.They are considered to be the culprit of tumor genesis,development,drug resistance,metastasis and recurrence because of their self-renewal,proliferation,and differentiation potential.The elimination of CSCs is thus the key to cure cancer,and targeting CSCs provides a new method for tumor treatment.Due to the advantages of controlled sustained release,targeting and high biocompatibility,a variety of nanomaterials are used in the diagnosis and treatments targeting CSCs and promote the recognition and removal of tumor cells and CSCs.This article mainly reviews the research progress of nanotechnology in sorting CSCs and nanodrug delivery systems targeting CSCs.Furthermore,we identify the problems and future research directions of nanotechnology in CSC therapy.We hope that this review will provide guidance for the design of nanotechnology as a drug carrier so that it can be used in clinic for cancer therapy as soon as possible.
基金supported by National Natural Science Foundation of China (Nos. 81373351, 81573382, and 81722043)grant from Shanghai Science and Technology Committee (15540723700)"Shu Guang" project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (15SG14)
文摘High-density lipoproteins(HDL) are naturally-occurring nanoparticles that are biocompatible,non-immunogenic and completely biodegradable. These endogenous particles can circulate for an extended period of time and transport lipids, proteins and micro RNA from donor cells to recipient cells.Based on their intrinsic targeting properties, HDL are regarded as promising drug delivery systems. In order to produce on a large scale and to avoid blood borne pollution, reconstituted high-density lipoproteins(rHDL) possessing the biological properties of HDL have been developed. This review summarizes the biological properties and biomedical applications of rHDL as drug delivery platforms. It focuses on the emerging approaches that have been developed for the generation of biomimetic nanoparticles rHDL to overcome the biological barriers to drug delivery, aiming to provide an alternative,promising avenue for efficient targeting transport of nanomedicine.