室温下以CuSO_4、KOH和抗坏血酸为原料,通过磁力搅拌法合成立方状的氧化亚铜(Cu_2O)纳米材料,并采用X射线衍射(XRD)、场发射扫描电镜(FESEM)、X射线能谱(EDS)等手段对其进行表征。基于Cu_2O纳米材料修饰的玻碳电极(GCE)构建了无酶过氧化...室温下以CuSO_4、KOH和抗坏血酸为原料,通过磁力搅拌法合成立方状的氧化亚铜(Cu_2O)纳米材料,并采用X射线衍射(XRD)、场发射扫描电镜(FESEM)、X射线能谱(EDS)等手段对其进行表征。基于Cu_2O纳米材料修饰的玻碳电极(GCE)构建了无酶过氧化氢(H_2O_2)传感器。循环伏安法(CV)表明Cu_2O对H_2O_2具有较高的电催化活性。采用电流-时间曲线研究了传感器的性能,包括检测电位、pH值、催化剂的量,并确定检测H_2O_2的最佳实验条件。在最佳实验条件下,H_2O_2的检测范围为7.10μM^20.5 m M,检测限为6.74μM(S/N=3)。该传感器具有成本低、制备简便、线性范围宽、灵敏度高、选择性好、性能稳定等优点。展开更多
文摘室温下以CuSO_4、KOH和抗坏血酸为原料,通过磁力搅拌法合成立方状的氧化亚铜(Cu_2O)纳米材料,并采用X射线衍射(XRD)、场发射扫描电镜(FESEM)、X射线能谱(EDS)等手段对其进行表征。基于Cu_2O纳米材料修饰的玻碳电极(GCE)构建了无酶过氧化氢(H_2O_2)传感器。循环伏安法(CV)表明Cu_2O对H_2O_2具有较高的电催化活性。采用电流-时间曲线研究了传感器的性能,包括检测电位、pH值、催化剂的量,并确定检测H_2O_2的最佳实验条件。在最佳实验条件下,H_2O_2的检测范围为7.10μM^20.5 m M,检测限为6.74μM(S/N=3)。该传感器具有成本低、制备简便、线性范围宽、灵敏度高、选择性好、性能稳定等优点。