Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten...Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.展开更多
Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by...Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by cracking.In this work,the tribological behaviour of the functionally graded WC-ceramic-particlereinforced Stellite 6 coatings is studied.To that end,the wear resistance at room temperature and 400°C is investigated.Moreover,the tribological analysis is supported by crack sensitivity and hardness evaluation,which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement.Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content,hence improving the tribological behaviour,most notably at high temperatures.Additionally,a shift from abrasive to oxidative wear is observed in high-temperature wear testing.展开更多
This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combinat...This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combination with the actual conditions of Tangkou Coal Mine in Shandong Province. It presents a set of comprehensive and integrated utilization schemes for the various different kinds of low quality heat energy. With heat pumps, the recycling of the low quality heat energy from the drainage, bathing water and the exhaust air can occur in winter, and in summer, there exists condensed heat of the refrigerating system. When in conjunction with solar collectors, the thermal utilization of solar power can be realized for the whole year. The system achieves mine drainage and bathing water purification and recycling, as well as purifying exhaust air by water spraying. It also satisfies the demands of a whole year's bathing heat for the coal mine, with refrigeration in summer, and heating for the ground house and shaft house in winter. It is able to integrate different kinds of low quality heat energy and low emission drainage and dust, and can replace the traditional boiler heating system. Finally, the system reduces conventional energy consumption and the amount of mine water drainage.展开更多
文摘Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.
基金supported by the Basque Government(Eusko Jaurlaritza)(Nos.KK-2022/00080 Minaku,KK-2022/00070 Edison)tthe Spanish Ministry of Science and Innovation(Nos.PID2019-109220RB-I00 Alasurf,PDC2021-121042-I00 EHU-Coax)the Basque Government(Eusko Jaurlaritza)in call IT 1573-22 for the financial support of the research group.
文摘Wear-driven tool failure is one of the main hurdles in the industry.This issue can be addressed through surface coating with ceramic-reinforced metal matrix composites.However,the maximum ceramic content is limited by cracking.In this work,the tribological behaviour of the functionally graded WC-ceramic-particlereinforced Stellite 6 coatings is studied.To that end,the wear resistance at room temperature and 400°C is investigated.Moreover,the tribological analysis is supported by crack sensitivity and hardness evaluation,which is of utmost importance in the processing of composite materials with ceramic-particle-reinforcement.Results indicate that functionally graded materials can be employed to increase the maximum admissible WC content,hence improving the tribological behaviour,most notably at high temperatures.Additionally,a shift from abrasive to oxidative wear is observed in high-temperature wear testing.
文摘This paper explores the integrated utilization of low-grade thermal energy in hot coal mines, based on analysis of original heating, refrigerating, mine draining, bath draining and air exhaust systems, and in combination with the actual conditions of Tangkou Coal Mine in Shandong Province. It presents a set of comprehensive and integrated utilization schemes for the various different kinds of low quality heat energy. With heat pumps, the recycling of the low quality heat energy from the drainage, bathing water and the exhaust air can occur in winter, and in summer, there exists condensed heat of the refrigerating system. When in conjunction with solar collectors, the thermal utilization of solar power can be realized for the whole year. The system achieves mine drainage and bathing water purification and recycling, as well as purifying exhaust air by water spraying. It also satisfies the demands of a whole year's bathing heat for the coal mine, with refrigeration in summer, and heating for the ground house and shaft house in winter. It is able to integrate different kinds of low quality heat energy and low emission drainage and dust, and can replace the traditional boiler heating system. Finally, the system reduces conventional energy consumption and the amount of mine water drainage.