A few hundreds nanometer-sized mesoporous silica and alumina spheres were synthesized in organic solvents. The impacts of ammonia, N, N-dimethylformamide (DMF) and stirring speed were also investigated.
A novel method of ultra-trace Cd(Ⅱ) preconcentration with nanometer-size TiO2 colloid and determination by graphite furnace atomic adsorption spectrometry(GFAAS) with slurry sampling was first advanced in this pa...A novel method of ultra-trace Cd(Ⅱ) preconcentration with nanometer-size TiO2 colloid and determination by graphite furnace atomic adsorption spectrometry(GFAAS) with slurry sampling was first advanced in this paper. The adsorption efficiency of nanometer-size TiO2 colloid for ultra-trace Cd(Ⅱ) could reach above 96% in a short time when the pH value was between 5 and 6. Other problems were also studied, such as adsorption capacity, nanometer-size TiO2 colloid dosage, effect of coexistent ions. The detection limit(3σ) and the relative standard deviation (R.S.D) of this method were 4.46.103 μg/L and 1.30%(n=7), respectively. The method was successfully applied to the analysis of environmental samples with recoveries between 93.8% and 96.4%.展开更多
A new absorbent of nanometer-size TiO2 colloid for Cu(Ⅱ ) was studied in this work. The adsorption rate could reach above 99% when the pH values were at the range of 5-6. The adsorption balance time, adsorption cap...A new absorbent of nanometer-size TiO2 colloid for Cu(Ⅱ ) was studied in this work. The adsorption rate could reach above 99% when the pH values were at the range of 5-6. The adsorption balance time, adsorption capacities, and the eluent were investigated. A novel method of trace Cu( Ⅱ ) preconcentration and separation with nanometer-size titanium dioxide colloid and determination by flame atomic absorption spectrometry (FAAS) was advanced. The detection limit (3a) of the method was 1.15 μg · L^-1, and the relative standard deviation (R.S.D) was 1.53% (n=6). Environmental sample experiments were also conducted to test the feasibility of the method, and it came out that the recovery rates were between 95.9% and 97.8%.展开更多
A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten ...A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten salt) after mechanical activ ation. The nanometer-sized TiC particles (15-20nm) have been synthesized by the method, and analyzed by X-ray diffraction (XRD), transmission electron microscop e (TEM), scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) sp ectroscopy. An interface interaction between liquid (molten salt) and solid (fin al product particles) phases plays a dominating role for the control of product particles size. The mechanism for the formation of nanometer-sized TiC particles has been discussed.展开更多
Novel nanometer-sized ScAlMgO4:Eu3+ phosphors were successfully synthesized by the citric acid complexation method.The mean particle size of the obtained powders was within the range of 100~150 nm according to the ...Novel nanometer-sized ScAlMgO4:Eu3+ phosphors were successfully synthesized by the citric acid complexation method.The mean particle size of the obtained powders was within the range of 100~150 nm according to the SEM patterns.In ScAlMgO4:Eu3+ showed strong characteristic red emission,of which the maximum emission peak was located at 629 nm for ultraviolet(UV) excitation.The dependence of photoluminescence intensity on Eu3+ concentration was also studied in detail,and the emission intensity of Sc1-xEuxAlMgO4 was about 10% at optimized Eu3+ concentration.Furthermore,the luminescence decay measurements showed that the lifetimes of Eu3+ were in the range of millisecond.The obtained ScAlMgO4:Eu3+ phosphors with nanometer size and excellent luminescence efficiency would be potential red phosphors in plasma display panels.展开更多
A new complex-precursor method was proposed to prepare nanometer-sized BaTiO3 powder. Firstly,Ti2O(O2)2(ta)24-complex ions were prepared by the reaction of H2O2,Ti4+ and ta3-(ta=C6H6O6N3-) with a desirable amount of s...A new complex-precursor method was proposed to prepare nanometer-sized BaTiO3 powder. Firstly,Ti2O(O2)2(ta)24-complex ions were prepared by the reaction of H2O2,Ti4+ and ta3-(ta=C6H6O6N3-) with a desirable amount of surface active agent,and then the Ba2Ti2O(O2)2(ta)2·2H2O precursor was obtained by reaction between Ti2O(O2)2(ta)24-and Ba2+. Finally,the precursor was annealed at 800 ℃ for 2 h to obtain BaTiO3 powder. The morphology,the particle size distribution,the purity and the molar ratio of Ba to Ti of BaTiO3 powder were investigated systematically by TEM,XRD,IR,Raman and chemical analysis,respectively. The results show that the BaTiO3 powders with the grain size of about 40 nm have a tetragonal crystalline structure at room temperature and a spherical morphology.展开更多
The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the develop...The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.展开更多
Described here are the fabrication and characterization of carbon fiber cylinder ultramicroelectrodes with cylinder length of less than 100 am, total tip diameter of several hundreds nanometers. The electrodes have be...Described here are the fabrication and characterization of carbon fiber cylinder ultramicroelectrodes with cylinder length of less than 100 am, total tip diameter of several hundreds nanometers. The electrodes have been fabricated by direct etching of carbon fiber using an ion beam thinner. Optical microscopy, scanning electron microscopy (SEM), cyclic voltammetry have been employed to characterize those electrodes. The experimental results obtained indicate the electrodes can be used for in vivo detection of neurotransmitters such as dopamine, 5—hydroxytryptamine in a single cell.展开更多
An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the inc...An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the increase of the elastic stiffness,the change of the yield surface due to MICP cementation and the degradation of calcium carbonate bonds during shearing.Specifically,to capture the typical contraction-dilation transition in MICP soils,the original volumetric hardening rule in the MCC model is modified to a combined deviatoric and volumetric hardening rule.The model could reproduce a series of drained triaxial tests on MICP-treated soils with different calcium carbonate contents.Further,we carry out a parametric study and observe numerical instability in some cases.In combination with an analytical analysis,our numerical modelling has identified the benefits and limitations of using MCCbased models in the simulation of MICP-cemented soils,leading to suggestions for further model development.展开更多
The adsorption properties of nanometer-size TiO2 for V(Ⅴ ) were studied. The adsorption rate could reach above 99~ when the pH values were at the range of 4 10. The adsorption balance time was 10 min , the saturati...The adsorption properties of nanometer-size TiO2 for V(Ⅴ ) were studied. The adsorption rate could reach above 99~ when the pH values were at the range of 4 10. The adsorption balance time was 10 min , the saturation capacity of adsorption of nanometer-size TiO2 to V(Ⅴ) was 6.43 mg per gram. Using 2 mL 1.5 mol · L^-1 NaOH as elution, we found the elution rate could reach 95%. A novel method of extreme-trace V(Ⅴ ) preconeentration with nanometer-size titanium dioxide and determination by graphite furnace atomic absorption spectroscopy (GFAAS) was advanced. The detection limit(3σ)of the method was 0.61μg ·L^-1 , and the relative standard deviation was 8.1% (n=6) of 2.5μg ·L-^1 V(Ⅴ). Environmental samples experiments were also conducted to test the feasibility of the method, and it came out that the recovery rates were between 91.2% and 102.0%.展开更多
In this paper, a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions. The field strength dis- tributions in a nanometer scale t...In this paper, a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions. The field strength dis- tributions in a nanometer scale tip-to-plate electrode arrangement were calculated using the finite element analysis (FEA) method, and the influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of effective discharge range (EDR) on the plate were also investigated and discussed. The simulation results show that the probe with a wide tip will cause a larger effective discharge range on the plate; the field strength in the gap is notably higher than that induced by the sharp tip probe; the effective discharge range will increase linearly with the rise of excitation voltage, and decrease nonlinearly with the rise of gap length. In addition, probe dimension, especially the width/height ratio, affects the effective discharge range in different manners. With the width/height ratio rising from 1 : 1 to 1 : 10, the effective discharge range will maintain stable when the excitation voltage is around 50 V. This will increase when the excitation voltage gets higher and decrease as the excitation voltage gets lower. Fhrthermore, when the gap length is 5 nm and the excitation voltage is below 20 V, the diameter of EDR in our simulation is about 150 nm, which is consistent with the experiment results reported by other research groups. Our work provides a preliminary understanding of nanometer scale discharges and establishes a predictive structure-behavior relationship.展开更多
Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assess...Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.展开更多
This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil...This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil recovery(EOR)in carbonate reservoirs.Thermal gravimetric analysis(TGA)tests were conducted initially in order to evaluate the properties of tragacanth gum.Subsequently,scanning electron microscopy(SEM)and energy-dispersive X-ray(EDX)tests were used to detect the structure of clay particles.In various scenarios,the effects of natural NPs and polymer on the wettability alteration,interfacial tension(IFT)reduction,viscosity improvement,and oil recovery were investigated through contact angle system,ring method,Anton Paar viscometer,and core flooding tests,respectively.The entire experiment was conducted at 25,50,and 75℃,respectively.According to the experimental results,the clay minerals alone did not have a significant effect on viscosity,but the addition of minerals to the polymer solution leads to the viscosity enhancement remarkably,resulting mobility ratio improvement.Among clay NPs,the combination of natural polymer and kaolinite results in increased viscosity at all temperatures.Considerable wettability alteration was also observed in the case of natural polymer and illite NPs.Illite in combination with natural polymer showed an ability in reducing IFT.Finally,the results of displacement experiments revealed that the combination of natural polymer and kaolinite could be the best option for EOR due to its substantial ability to improve the recovery factor.展开更多
Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires...Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires solid knowledge about the interaction mechanism between surfactants,bitumen,water,and rock at the nanoscale level.In particular,oil sands ores have extremely complex mineralogy as they contain many clay minerals(montmorillonite,illite,kaolinite).In this study,molecular dynamics simulation is carried out to elucidate the unclear mechanisms of clay minerals contributing to the bitumen recovery under a steam-anionic surfactant co-injection process.We found that the clay content significantly influenced an oil detachment process from hydrophobic quartz surfaces.Results reveal that the presence of montmorillonite,illite,and the siloxane surface of kaolinite in nanopores can enhance the oil detachment process from the hydrophobic surfaces because surfactant molecules have a stronger tendency to interact with bitumen and quartz.Conversely,the gibbsite surfaces of kaolinite curb the oil detachment process.Through interaction energy analysis,the siloxane surfaces of kaolinite result in the most straightforward oil detachment process.In addition,we found that the clay type presented in nanopores affected the wettability of the quartz surfaces.The quartz surfaces associated with the gibbsite surfaces of kaolinite show the strongest hydrophilicity.By comparing previous experimental findings with the results of molecular dynamics(MD)simulations,we observed consistent wetting characteristics.This alignment serves to validate the reliability of the simulation outcomes.The outcome of this paper makes up for the lack of knowledge of a surfactant-assisted bitumen recovery process and provides insights for further in-situ bitumen production engineering designs.展开更多
Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary pro...Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings.展开更多
Compacted clay liners are an integral part of the waste landfills,which are provided to contain the leachate within the landfills and protect the surrounding environment.Generally,locally available natural soils are u...Compacted clay liners are an integral part of the waste landfills,which are provided to contain the leachate within the landfills and protect the surrounding environment.Generally,locally available natural soils are used for the construction of compacted clay liners if they satisfy the design criteria.However,not all soils in their natural state satisfy all the design criteria for the liner materials.Thus,there is a definite need to modify the locally available natural soils by blending with bentonite to meet the required design criteria for the liners.In view of this,the present study evaluates the suitability of an Indian red soil enhanced with bentonite as a liner material.To achieve this,a series of experiments were carried out using locally available red soil and bentonite.First,the suitability of the red soil was evaluated as a liner material.The experimental results showed that the red soil met all the selection criteria stipulated by the Environmental Protection Agencies(EPAs)for the liners except the hydraulic conductivity criterion.Therefore,the red soil was mixed with bentonite contents of 10%,20%and 30%,and the red soil-bentonite mixtures were evaluated for their suitability for liners in their compacted state.Further,as the liners in the arid and semi-arid regions are subjected to moisture variations due to seasonal moisture fluctuations and other factors,the red soil-bentonite mixtures were subjected to wetdry cycles,and their suitability was evaluated after wet-dry cycles.The experimental results revealed that all the red soil-bentonite mixtures met the stipulated EPA criteria for the liners in the as-compacted state.However,the red soil-bentonite mixtures with 20%and 30%bentonite contents only satisfied the hydraulic conductivity requirement even after wet-dry cycles.The experimental findings were supplemented with the microstructural insights captured through digital camera images,scanning electron microscopy(SEM),and mercury intrusion porosimetry(MIP)studies.展开更多
We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey s...We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.展开更多
The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress dis...The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress distribution across the embankment width and the behaviour of unreinforced foundations.Thus,five centrifuge tests were conducted to examine the bearing and deformation behaviours of NPRS(Non-Connected Piled Raft Systems)and GRPS(GeosyntheticReinforced Pile-Supported systems)with varying substratum stiffness,then a comparative analysis was conducted on embankment settlement,pressures underneath the embankments,and axial forces along the piles.The results indicated that greater substratum stiffness correlates with reduced settlement and deformation at various depths.Deformation occurring 5 meters from the embankment toe includes settlement in NPRS and upward movement in GRPS.The potential sliding surface is primarily located within the embankment in NPRS,whereas it may extend through both the embankment and foundation in GRPS.The pile-soil stress ratio and efficiency in NPRS are higher than in GRPS across the embankment.The axial force borne by end-bearing piles is significantly greater than that by floating piles.As the buried depth increases,the axial force in GRPS initially rises then declines,whereas in NPRS,it remains relatively constant within a certain range before decreasing.This study aids in assessing the applicability of composite foundations in complex railway environments and provides a reference for procedural measures under similar conditions.展开更多
Water seepage in soil is a fundamental problem involving various scientific and engineering fields.According to the literature,low-velocity water seepage in low-permeability porous media,such as clay,does not follow D...Water seepage in soil is a fundamental problem involving various scientific and engineering fields.According to the literature,low-velocity water seepage in low-permeability porous media,such as clay,does not follow Darcy's law,also known as pre-Darcy flow.The formation of immovable water due to water adsorption on the pore wall is believed to be responsible for the formation of pre-Darcy flow.However,this view lacks direct solid evidence.To investigate the pre-Darcy water flow in clay,head permeability experiments are conducted on six clay samples with different densities.The results indicate that water seepage in clay at low hydraulic gradients does not follow Darcy's law.A clear nonlinear relationship between flow velocity and hydraulic gradient is observed.Water flow in clay can be divided into the pre-Darcy flow and Darcy flow regions by the critical hydraulic gradient,which is 10-12 for the Albic soil with dry density between 1.3 g/cm^(3)and 1.8 g/cm^(3).According to the disjoining pressure theory,immovable water due to water adsorption on the pore wall is the primary reason for water flow deviating from Darcy's law in clay.The results indicate that the percentage of movable water ranges from 39.7%to 59.3%for the six samples at a hydraulic gradient of 1.As the hydraulic gradient increases,the percentage of moveable water also increases.Additionally,there is a strong correlation between the percentage of movable water and the variation in hydraulic conductivity with the hydraulic gradient.Furthermore,a quantitative relationship between the percentage of movable water and the hydraulic conductivity has been established.The results of this study suggest that water adsorption on the pore wall not only affects the water movability,but is also closely related to the pre-Darcy flow phenomenon in clay.展开更多
Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is...Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is employed for fitting saturated soil,and the mechanical element model is generally linear,which cannot well fit the nonlinear deformation of the soil with time in practice.The creep process of the soil is not only time-dependent,but also related to the deviatoric stress level.Therefore,the fractional calculus theory and a parameter n reflecting the effect of deviatoric stress level on the creep properties of the soil were introduced into the element model,and the fractional qBurgers creep model was established by using the fractional Koeller dashpot and Caputo fractional calculus.The proposed model was used to fit the triaxial test data of reticulated red clay under different net confining pressures and matric suctions by unsaturated triaxial apparatus.The proposed model can well describe the nonlinearity of unsaturated reticulated red clay,has memory and global correlation to the creep development process of unsaturated reticulated red clay,and has clear physical meaning.The functional relationships of the model parameters with the matric suction,net confining pressure and deviatoric stress level were deduced,so that the creep curves of unsaturated reticulated red clay can be obtained for any conditions,which is of great value for the study of unsaturated soils.展开更多
基金the National Natural Science Foundation of China(Grant No. 29873012, 29925309) and National Ed-ucation Ministry.
文摘A few hundreds nanometer-sized mesoporous silica and alumina spheres were synthesized in organic solvents. The impacts of ammonia, N, N-dimethylformamide (DMF) and stirring speed were also investigated.
文摘A novel method of ultra-trace Cd(Ⅱ) preconcentration with nanometer-size TiO2 colloid and determination by graphite furnace atomic adsorption spectrometry(GFAAS) with slurry sampling was first advanced in this paper. The adsorption efficiency of nanometer-size TiO2 colloid for ultra-trace Cd(Ⅱ) could reach above 96% in a short time when the pH value was between 5 and 6. Other problems were also studied, such as adsorption capacity, nanometer-size TiO2 colloid dosage, effect of coexistent ions. The detection limit(3σ) and the relative standard deviation (R.S.D) of this method were 4.46.103 μg/L and 1.30%(n=7), respectively. The method was successfully applied to the analysis of environmental samples with recoveries between 93.8% and 96.4%.
基金Supported by the Natural Science Foundation of Hubei Province(2006ABA236)
文摘A new absorbent of nanometer-size TiO2 colloid for Cu(Ⅱ ) was studied in this work. The adsorption rate could reach above 99% when the pH values were at the range of 5-6. The adsorption balance time, adsorption capacities, and the eluent were investigated. A novel method of trace Cu( Ⅱ ) preconcentration and separation with nanometer-size titanium dioxide colloid and determination by flame atomic absorption spectrometry (FAAS) was advanced. The detection limit (3a) of the method was 1.15 μg · L^-1, and the relative standard deviation (R.S.D) was 1.53% (n=6). Environmental sample experiments were also conducted to test the feasibility of the method, and it came out that the recovery rates were between 95.9% and 97.8%.
基金The project was supported by China Postdoctoral Science Foundation(No.2003034452)National Natural Science Foundation of China(No.50371027).
文摘A novel process for synthesizing nano-ceramics powders, named mechanical & therm al activation processing, is discussed in the present paper. It is a processing based on thermal activation in liquid phase (molten salt) after mechanical activ ation. The nanometer-sized TiC particles (15-20nm) have been synthesized by the method, and analyzed by X-ray diffraction (XRD), transmission electron microscop e (TEM), scanning electron microscopy (SEM) and energy dispersion X-ray (EDX) sp ectroscopy. An interface interaction between liquid (molten salt) and solid (fin al product particles) phases plays a dominating role for the control of product particles size. The mechanism for the formation of nanometer-sized TiC particles has been discussed.
基金supported by the Natual Science Foundation of Fujian Province (2006H0041)
文摘Novel nanometer-sized ScAlMgO4:Eu3+ phosphors were successfully synthesized by the citric acid complexation method.The mean particle size of the obtained powders was within the range of 100~150 nm according to the SEM patterns.In ScAlMgO4:Eu3+ showed strong characteristic red emission,of which the maximum emission peak was located at 629 nm for ultraviolet(UV) excitation.The dependence of photoluminescence intensity on Eu3+ concentration was also studied in detail,and the emission intensity of Sc1-xEuxAlMgO4 was about 10% at optimized Eu3+ concentration.Furthermore,the luminescence decay measurements showed that the lifetimes of Eu3+ were in the range of millisecond.The obtained ScAlMgO4:Eu3+ phosphors with nanometer size and excellent luminescence efficiency would be potential red phosphors in plasma display panels.
基金Project(06JJ50150) supported by the Hunan Provincial Natural Science Foundation of China
文摘A new complex-precursor method was proposed to prepare nanometer-sized BaTiO3 powder. Firstly,Ti2O(O2)2(ta)24-complex ions were prepared by the reaction of H2O2,Ti4+ and ta3-(ta=C6H6O6N3-) with a desirable amount of surface active agent,and then the Ba2Ti2O(O2)2(ta)2·2H2O precursor was obtained by reaction between Ti2O(O2)2(ta)24-and Ba2+. Finally,the precursor was annealed at 800 ℃ for 2 h to obtain BaTiO3 powder. The morphology,the particle size distribution,the purity and the molar ratio of Ba to Ti of BaTiO3 powder were investigated systematically by TEM,XRD,IR,Raman and chemical analysis,respectively. The results show that the BaTiO3 powders with the grain size of about 40 nm have a tetragonal crystalline structure at room temperature and a spherical morphology.
文摘The accurate prediction of the friction angle of clays is crucial for assessing slope stability in engineering applications.This study addresses the importance of estimating the friction angle and presents the development of four soft computing models:YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJCSA-MLPnet.First of all,the Yeo-Johnson(YJ)transformation technique was used to stabilize the variance of data and make it more suitable for parametric statistical models that assume normality and equal variances.This technique is expected to improve the accuracy of friction angle prediction models.The friction angle prediction models then utilized multi-layer perceptron neural networks(MLPnet)and metaheuristic optimization algorithms to further enhance performance,including flower pollination algorithm(FPA),coral reefs optimization(CRO),ant colony optimization continuous(ACOC),and cuckoo search algorithm(CSA).The prediction models without the YJ technique,i.e.FPA-MLPnet,CRO-MLPnet,ACOC-MLPnet,and CSA-MLPnet,were then compared to those with the YJ technique,i.e.YJ-FPA-MLPnet,YJ-CRO-MLPnet,YJ-ACOC-MLPnet,and YJ-CSA-MLPnet.Among these,the YJ-CRO-MLPnet model demonstrated superior reliability,achieving an accuracy of up to 83%in predicting the friction angle of clay in practical engineering scenarios.This improvement is significant,as it represents an increase from 1.3%to approximately 20%compared to the models that did not utilize the YJ transformation technique.
基金This project was supported by the National Science Foundation of China and Doctoral Programme from State Education Commission Foundation of China
文摘Described here are the fabrication and characterization of carbon fiber cylinder ultramicroelectrodes with cylinder length of less than 100 am, total tip diameter of several hundreds nanometers. The electrodes have been fabricated by direct etching of carbon fiber using an ion beam thinner. Optical microscopy, scanning electron microscopy (SEM), cyclic voltammetry have been employed to characterize those electrodes. The experimental results obtained indicate the electrodes can be used for in vivo detection of neurotransmitters such as dopamine, 5—hydroxytryptamine in a single cell.
基金funded by the German Research Foundation(DFG)(Grant No.NA 330/20e1).
文摘An elastoplastic constitutive model based on the Modified Cam Clay(MCC)model is developed to describe the mechanical behaviour of soils cemented via microbially induced calcite precipitation(MICP).It considers the increase of the elastic stiffness,the change of the yield surface due to MICP cementation and the degradation of calcium carbonate bonds during shearing.Specifically,to capture the typical contraction-dilation transition in MICP soils,the original volumetric hardening rule in the MCC model is modified to a combined deviatoric and volumetric hardening rule.The model could reproduce a series of drained triaxial tests on MICP-treated soils with different calcium carbonate contents.Further,we carry out a parametric study and observe numerical instability in some cases.In combination with an analytical analysis,our numerical modelling has identified the benefits and limitations of using MCCbased models in the simulation of MICP-cemented soils,leading to suggestions for further model development.
文摘The adsorption properties of nanometer-size TiO2 for V(Ⅴ ) were studied. The adsorption rate could reach above 99~ when the pH values were at the range of 4 10. The adsorption balance time was 10 min , the saturation capacity of adsorption of nanometer-size TiO2 to V(Ⅴ) was 6.43 mg per gram. Using 2 mL 1.5 mol · L^-1 NaOH as elution, we found the elution rate could reach 95%. A novel method of extreme-trace V(Ⅴ ) preconeentration with nanometer-size titanium dioxide and determination by graphite furnace atomic absorption spectroscopy (GFAAS) was advanced. The detection limit(3σ)of the method was 0.61μg ·L^-1 , and the relative standard deviation was 8.1% (n=6) of 2.5μg ·L-^1 V(Ⅴ). Environmental samples experiments were also conducted to test the feasibility of the method, and it came out that the recovery rates were between 91.2% and 102.0%.
基金supported in part by External Cooperation Program of Chinese Academy of Sciences(No.GJHZ1218)National Natural Science Foundation of China(No.61004133)SSSTC JRP awards 2011(IZLCZ2 138953)
文摘In this paper, a two-dimensional nanometer scale tip-plate discharge model has been employed to study nanoscale electrical discharge in atmospheric conditions. The field strength dis- tributions in a nanometer scale tip-to-plate electrode arrangement were calculated using the finite element analysis (FEA) method, and the influences of applied voltage amplitude and frequency as well as gas gap distance on the variation of effective discharge range (EDR) on the plate were also investigated and discussed. The simulation results show that the probe with a wide tip will cause a larger effective discharge range on the plate; the field strength in the gap is notably higher than that induced by the sharp tip probe; the effective discharge range will increase linearly with the rise of excitation voltage, and decrease nonlinearly with the rise of gap length. In addition, probe dimension, especially the width/height ratio, affects the effective discharge range in different manners. With the width/height ratio rising from 1 : 1 to 1 : 10, the effective discharge range will maintain stable when the excitation voltage is around 50 V. This will increase when the excitation voltage gets higher and decrease as the excitation voltage gets lower. Fhrthermore, when the gap length is 5 nm and the excitation voltage is below 20 V, the diameter of EDR in our simulation is about 150 nm, which is consistent with the experiment results reported by other research groups. Our work provides a preliminary understanding of nanometer scale discharges and establishes a predictive structure-behavior relationship.
基金support provided by the UK Engineering and Physical Sciences Research Council(EP/V012169/1).
文摘Landslides occurring in sensitive clay often result in widespread destruction,posing a significant risk to human lives and property due to the substantial decrease in undrained shear strength during deformation.Assessing the consequences of these landslides is challenging and necessitates robust numerical methods to comprehensively investigate their failure mechanisms.While studies have extensively explored upward progressive landslides in sensitive clays,understanding downward progressive cases remains limited.In this study,we utilised the nodal integration-based particle finite element method(NPFEM)with a nonlinear strain-softening model to analyse downward progressive landslides in sensitive clay on elongated slopes,induced by surcharge loads near the crest.We focused on elucidating the underlying failure mechanisms and evaluating the effects of different soil parameters and strainsoftening characteristics.The simulation results revealed the typical pattern for downward landslides,which typically start with a localised failure in proximity to the surcharge loads,followed by a combination of different types of failure mechanisms,including single flow slides,translational progressive landslides,progressive flow slides,and spread failures.Additionally,inclined shear bands occur within spread failures,often adopting distinctive ploughing patterns characterised by triangular shapes.The sensitive clay thickness at the base,the clay strength gradient,the sensitivity,and the softening rate significantly influence the failure mechanisms and the extent of diffused displacement.Remarkably,some of these effects mirror those observed in upward progressive landslides,underscoring the interconnectedness of these phenomena.This study contributes valuable insights into the complex dynamics of sensitive clay landslides,shedding light on the intricate interplay of factors governing their behaviour and progression.
文摘This paper aims to investigate the tragacanth gum potential as a natural polymer combined with natural clay mineral(montmorillonite,kaolinite,and illite)nanoparticles(NPs)to form NP-polymer suspension for enhanced oil recovery(EOR)in carbonate reservoirs.Thermal gravimetric analysis(TGA)tests were conducted initially in order to evaluate the properties of tragacanth gum.Subsequently,scanning electron microscopy(SEM)and energy-dispersive X-ray(EDX)tests were used to detect the structure of clay particles.In various scenarios,the effects of natural NPs and polymer on the wettability alteration,interfacial tension(IFT)reduction,viscosity improvement,and oil recovery were investigated through contact angle system,ring method,Anton Paar viscometer,and core flooding tests,respectively.The entire experiment was conducted at 25,50,and 75℃,respectively.According to the experimental results,the clay minerals alone did not have a significant effect on viscosity,but the addition of minerals to the polymer solution leads to the viscosity enhancement remarkably,resulting mobility ratio improvement.Among clay NPs,the combination of natural polymer and kaolinite results in increased viscosity at all temperatures.Considerable wettability alteration was also observed in the case of natural polymer and illite NPs.Illite in combination with natural polymer showed an ability in reducing IFT.Finally,the results of displacement experiments revealed that the combination of natural polymer and kaolinite could be the best option for EOR due to its substantial ability to improve the recovery factor.
文摘Thermal recovery techniques for producing oil sands have substantial environmental impacts.Surfactants can efficiently improve thermal bitumen recovery and reduce the required amount of steam.Such a technique requires solid knowledge about the interaction mechanism between surfactants,bitumen,water,and rock at the nanoscale level.In particular,oil sands ores have extremely complex mineralogy as they contain many clay minerals(montmorillonite,illite,kaolinite).In this study,molecular dynamics simulation is carried out to elucidate the unclear mechanisms of clay minerals contributing to the bitumen recovery under a steam-anionic surfactant co-injection process.We found that the clay content significantly influenced an oil detachment process from hydrophobic quartz surfaces.Results reveal that the presence of montmorillonite,illite,and the siloxane surface of kaolinite in nanopores can enhance the oil detachment process from the hydrophobic surfaces because surfactant molecules have a stronger tendency to interact with bitumen and quartz.Conversely,the gibbsite surfaces of kaolinite curb the oil detachment process.Through interaction energy analysis,the siloxane surfaces of kaolinite result in the most straightforward oil detachment process.In addition,we found that the clay type presented in nanopores affected the wettability of the quartz surfaces.The quartz surfaces associated with the gibbsite surfaces of kaolinite show the strongest hydrophilicity.By comparing previous experimental findings with the results of molecular dynamics(MD)simulations,we observed consistent wetting characteristics.This alignment serves to validate the reliability of the simulation outcomes.The outcome of this paper makes up for the lack of knowledge of a surfactant-assisted bitumen recovery process and provides insights for further in-situ bitumen production engineering designs.
基金supported by the National Natural Science Foundation of China(Project No.41920104007 and 41772334).
文摘Red clay landslides are widely distributed worldwide,resulting in severe loss of life and property.Although rainfall-induced red clay slopes have received extensive attention,the role of cracks in the evolutionary process of red clay slopes and their connection to failure mechanisms is still poorly understood.A comprehensive approach integrating field investigation,laboratory tests,and numerical simulations was conducted to study the 168 red clay landslides in Xinshao County,China.The results show that red clay is prone to forming cracks at high moisture content due to its low swelling and high shrinkage properties.The failure mode of red clay slopes can be summarized in three stages:crack generation,slope excavation,and slope failure.Furthermore,the retrospective analysis and numerical simulations of the typical landslide in Guanchong indicated that intense rainfall primarily impacts the shallow layer of soil within approximately 0.5 m on the intact slope.However,cracks change the pattern of rainfall infiltration in the slope.Rainwater infiltrates rapidly through the preferential channels induced by the cracks rather than uniformly and slowly from the slope surface.This results in a significant increase in both the depth of infiltration and the saturated zone area of the cracked slope,reaching 3.8 m and 36.2 m^(2),respectively.Consequently,the factor of safety of the slope decreases by 13.4%compared to the intact slope,ultimately triggering landslides.This study can provide valuable insights into understanding the failure mechanisms of red clay slopes in China and other regions with similar geological settings.
文摘Compacted clay liners are an integral part of the waste landfills,which are provided to contain the leachate within the landfills and protect the surrounding environment.Generally,locally available natural soils are used for the construction of compacted clay liners if they satisfy the design criteria.However,not all soils in their natural state satisfy all the design criteria for the liner materials.Thus,there is a definite need to modify the locally available natural soils by blending with bentonite to meet the required design criteria for the liners.In view of this,the present study evaluates the suitability of an Indian red soil enhanced with bentonite as a liner material.To achieve this,a series of experiments were carried out using locally available red soil and bentonite.First,the suitability of the red soil was evaluated as a liner material.The experimental results showed that the red soil met all the selection criteria stipulated by the Environmental Protection Agencies(EPAs)for the liners except the hydraulic conductivity criterion.Therefore,the red soil was mixed with bentonite contents of 10%,20%and 30%,and the red soil-bentonite mixtures were evaluated for their suitability for liners in their compacted state.Further,as the liners in the arid and semi-arid regions are subjected to moisture variations due to seasonal moisture fluctuations and other factors,the red soil-bentonite mixtures were subjected to wetdry cycles,and their suitability was evaluated after wet-dry cycles.The experimental results revealed that all the red soil-bentonite mixtures met the stipulated EPA criteria for the liners in the as-compacted state.However,the red soil-bentonite mixtures with 20%and 30%bentonite contents only satisfied the hydraulic conductivity requirement even after wet-dry cycles.The experimental findings were supplemented with the microstructural insights captured through digital camera images,scanning electron microscopy(SEM),and mercury intrusion porosimetry(MIP)studies.
文摘We read with great interest the recent article by Erenson(2023)entitled“Dispersion characteristics of clayey soils containing waste rubber particles”.The author has studied the dispersion characteristics of clayey soils containing different percentages of waste rubber particles(WRPs)by performing several tests(viz.consistency limit,linear shrinkage limit,double hydrometer,crumb test and pinhole test)and scanning electron microscopy(SEM)analysis on five clayey(viz.Na-activated bentonite,refined ball clay,Ukrainian kaolin,Avanos kaolin and Afyon clay)samples containing 0%,5%,10%and 15%WRPs.It should be noted that Erenson(2023)has presented some interesting observations,but there are some serious issues that we want to share through this discussion and request the author of the original paper to address them to avoid their persistence in the scientific literature.
基金financially supported by the National Natural Science Foundation of China(Nos.51878577 and 52378463)the Natural Science Foundation of Shandong Provincial,China(No.ZR2022ME042)the School-Enterprise Cooperation Program of China Railway 14th Bureau Group Co.(QTHT-HGLCHSD-00052)。
文摘The semi-rigid pile-supported composite foundation is widely used in highway projects due to its effectiveness in increasing the bearing capacity and stability of foundations.It is crucial to understand the stress distribution across the embankment width and the behaviour of unreinforced foundations.Thus,five centrifuge tests were conducted to examine the bearing and deformation behaviours of NPRS(Non-Connected Piled Raft Systems)and GRPS(GeosyntheticReinforced Pile-Supported systems)with varying substratum stiffness,then a comparative analysis was conducted on embankment settlement,pressures underneath the embankments,and axial forces along the piles.The results indicated that greater substratum stiffness correlates with reduced settlement and deformation at various depths.Deformation occurring 5 meters from the embankment toe includes settlement in NPRS and upward movement in GRPS.The potential sliding surface is primarily located within the embankment in NPRS,whereas it may extend through both the embankment and foundation in GRPS.The pile-soil stress ratio and efficiency in NPRS are higher than in GRPS across the embankment.The axial force borne by end-bearing piles is significantly greater than that by floating piles.As the buried depth increases,the axial force in GRPS initially rises then declines,whereas in NPRS,it remains relatively constant within a certain range before decreasing.This study aids in assessing the applicability of composite foundations in complex railway environments and provides a reference for procedural measures under similar conditions.
基金funding support from the China National Science Foundation(Grant Nos.42072280,U2244215,41172205).
文摘Water seepage in soil is a fundamental problem involving various scientific and engineering fields.According to the literature,low-velocity water seepage in low-permeability porous media,such as clay,does not follow Darcy's law,also known as pre-Darcy flow.The formation of immovable water due to water adsorption on the pore wall is believed to be responsible for the formation of pre-Darcy flow.However,this view lacks direct solid evidence.To investigate the pre-Darcy water flow in clay,head permeability experiments are conducted on six clay samples with different densities.The results indicate that water seepage in clay at low hydraulic gradients does not follow Darcy's law.A clear nonlinear relationship between flow velocity and hydraulic gradient is observed.Water flow in clay can be divided into the pre-Darcy flow and Darcy flow regions by the critical hydraulic gradient,which is 10-12 for the Albic soil with dry density between 1.3 g/cm^(3)and 1.8 g/cm^(3).According to the disjoining pressure theory,immovable water due to water adsorption on the pore wall is the primary reason for water flow deviating from Darcy's law in clay.The results indicate that the percentage of movable water ranges from 39.7%to 59.3%for the six samples at a hydraulic gradient of 1.As the hydraulic gradient increases,the percentage of moveable water also increases.Additionally,there is a strong correlation between the percentage of movable water and the variation in hydraulic conductivity with the hydraulic gradient.Furthermore,a quantitative relationship between the percentage of movable water and the hydraulic conductivity has been established.The results of this study suggest that water adsorption on the pore wall not only affects the water movability,but is also closely related to the pre-Darcy flow phenomenon in clay.
基金supported by the National Science Fund for Distinguished Young Scholars (Grant No.52025085)the National Key Research and Development Program of China (Grant No.2021YFB2600900)the Open Fund of Key Laboratory of Special Environment Road Engineering of Hunan Province,China (Changsha University of Science and Technology) (Grant No.kfj230606).
文摘Establishment of a creep model is an important method to analyze the relationship between soil creep deformation and time,and the element model is widely used for studying soil creep.However,the element creep model is employed for fitting saturated soil,and the mechanical element model is generally linear,which cannot well fit the nonlinear deformation of the soil with time in practice.The creep process of the soil is not only time-dependent,but also related to the deviatoric stress level.Therefore,the fractional calculus theory and a parameter n reflecting the effect of deviatoric stress level on the creep properties of the soil were introduced into the element model,and the fractional qBurgers creep model was established by using the fractional Koeller dashpot and Caputo fractional calculus.The proposed model was used to fit the triaxial test data of reticulated red clay under different net confining pressures and matric suctions by unsaturated triaxial apparatus.The proposed model can well describe the nonlinearity of unsaturated reticulated red clay,has memory and global correlation to the creep development process of unsaturated reticulated red clay,and has clear physical meaning.The functional relationships of the model parameters with the matric suction,net confining pressure and deviatoric stress level were deduced,so that the creep curves of unsaturated reticulated red clay can be obtained for any conditions,which is of great value for the study of unsaturated soils.