期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Field emission properties of a-C and a-C:H films deposited on silicon surfaces modified with nickel nanoparticles
1
作者 姜金龙 王玉宝 +3 位作者 王琼 黄浩 魏智强 郝俊英 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期398-402,共5页
The a-C and a-C:H films are deposited on silicon surfaces modified with and without nickel nanoparticles by using mid-frequency magnetron sputtering. The microstructures and morphologies of the films are analyzed by ... The a-C and a-C:H films are deposited on silicon surfaces modified with and without nickel nanoparticles by using mid-frequency magnetron sputtering. The microstructures and morphologies of the films are analyzed by Raman spec- troscopy and atomic force microscopy. Field emission behaviors of the deposited films with and without nickel nanopar- ticles modification are comparatively investigated. It is found that the hydrogen-free carbon film exhibits a high field emission current density and low turn-on electric field compared with the hydrogenated carbon film. Nickel modifying could increase the current density, whereas it has no significant effect on the turn-on electric field. The mechanism of field electron emission of a sample is discussed from the surface morphologies of the films and nickel nanoparticle roles in the interface between film and substrate. 展开更多
关键词 DLC films field emission magnetron sputtering nickel nanoparticles modification
下载PDF
A novel approach for Apocynum venetum/cotton blended fabrics modification by cationic polymer nanoparticles 被引量:1
2
作者 Xiu-Ming Liu Cai-Yan Li +1 位作者 Kuan-Jun Fang Da-Wu Shu 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第5期955-959,共5页
Apocynum venetum/cotton blended fabrics have been subjected to treat with cationic polymer nanoparticles followed by dyeing with Acid Red B,and then studied for their dyeing performance and morphology.The investigatio... Apocynum venetum/cotton blended fabrics have been subjected to treat with cationic polymer nanoparticles followed by dyeing with Acid Red B,and then studied for their dyeing performance and morphology.The investigation on the effect of modification factors on the blended fabrics indicated that the 0.5 g/L nanoparticles concentration,60 min treating time,60 ℃ treating temperature and pH 6-8 are the optimum modification process to improve the dyeability of acid dye.In addition,the SEM images show that nanoparticles can be adsorbed on the surface of modified A.venetum or cotton fibers,and the two different fibers could have the same adsorption ability to Acid Red B. 展开更多
关键词 A. venetum/cotton blended fabrics Cationic copolymer nanoparticles modification Acid dye Morphology
原文传递
Improved blending strategy for membrane modification virtue of surface segregation using surface-tailored amphiphilic nanoparticles
3
作者 Shuai Liang Peng Gao +2 位作者 Xiaoqi Gao Kang Xiao Xia Huang 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2016年第6期113-121,共9页
Membrane modification is one of the most feasible and effective solutions to membrane fouling proble.m which tenaciousl.y hampers .the furher au .gmentation of me .rnbrane sep.aration technology.Blending modification ... Membrane modification is one of the most feasible and effective solutions to membrane fouling proble.m which tenaciousl.y hampers .the furher au .gmentation of me .rnbrane sep.aration technology.Blending modification with nanoparticles (NPs), owing to the convenience of being incorporated in established membrane.p.rodu. ction lines, possesses an advantag, eous viability in practical applications.However, the existing blending strategy suffers from a low utilization efficiency due to NP encasement by membrane matrix. The current study proposed an improved blending modification approach with amphiphilic NPs (aNPs), which were prepared through silanization using 3-(Trimethoxysilyl)propyl methacrylate (TMSPMA) as coupling agents and ZnO or SiO2 as pristine NPs (pNPs), respectively.The Fourier transform infrared and X-ray photoelectron spectroscopy analyses revealed thepresence of appropriate organic components in both the ZnO and SiO2 aNPs, which verified the success of the silanization process. As compared with the pristine and conventional pNP-blended membranes, both the ZnO aNP-blended and SiO2 aNP-blended membranes with proper silanization (100% and 200% w/w) achieved a significantly increased blending efficiency with more NPs scattenng on the internal and external membrane surfaces under scanning electron microscope observation. This improvement contributed to the increase of membrane hydrophilicity. Nevertheless, an extra dosage of the TMSPMA led to an encasement of NPs, thereby adversely affecting the properties of the resultant membranes. On the basis of all the tests, 100% (w/w) was selected as the optimum TMSPMA dosage for blending modification for both the ZnO and SiO2 types. 展开更多
关键词 Membrane modification Nanoparticle Hydrophilic Amphiphilic Blending
原文传递
The in vitro and in vivo toxicity of gold nanoparticles 被引量:9
4
作者 Yan-Peng Jia Bu-Yun Ma +1 位作者 Xia-Wei Wei Zhi-Yong Qian 《Chinese Chemical Letters》 SCIE CAS CSCD 2017年第4期691-702,共12页
Gold nanoparticles,owing to their unique physicochemical and optical properties,well-established synthetic methods and easy modifications,have been widely used in biomedical science.Therefore,for their safe and effici... Gold nanoparticles,owing to their unique physicochemical and optical properties,well-established synthetic methods and easy modifications,have been widely used in biomedical science.Therefore,for their safe and efficient applications,much attention has been given to the toxicological evaluations of gold nanoparticles in biological systems.A large number of studies focusing on this problem have been carried out during the past years.However,the researches on gold nanoparticles toxicity still remain fragmentary and even contradictory with each other.This may be caused by the variety in experimental conditions.In this review,we aim to provide a better understanding about the in vitro and in vivo toxicity of gold nanoparticles by reviewing and describing the up to date literatures related to this problem and we mainly focused on these properties such as the particle size and shape,the surface charge and modification.Besides,we also summarized the adverse effect of gold nanoparticles on immune systems and analyzed the origin of the toxicity. 展开更多
关键词 Gold nanoparticles Toxicity Size Shape Surface modification In vitro In vivo
原文传递
Inhibition of thrombin by functionalized C_(60)nanoparticles revealed via in vitro assays and in silico studies
5
作者 Yanyan Liu Jianjie Fu +3 位作者 Wenxiao Pan Qiao Xue Xian Liu Aiqian Zhang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第1期285-295,共11页
The studies on the human toxicity of nanoparticles(NPs) are far behind the rapid development of engineered functionalized NPs. Fullerene has been widely used as drug carrier skeleton due to its reported low risk. Ho... The studies on the human toxicity of nanoparticles(NPs) are far behind the rapid development of engineered functionalized NPs. Fullerene has been widely used as drug carrier skeleton due to its reported low risk. However, different from other kinds of NPs, fullerene-based NPs(C_(60) NPs) have been found to have an anticoagulation effect, although the potential target is still unknown. In the study, both experimental and computational methods were adopted to gain mechanistic insight into the modulation of thrombin activity by nine kinds of C_(60) NPs with diverse surface chemistry properties. In vitro enzyme activity assays showed that all tested surface-modified C_(60) NPs exhibited thrombin inhibition ability. Kinetic studies coupled with competitive testing using 3 known inhibitors indicated that six of the C_(60) NPs, of greater hydrophobicity and hydrogen bond(HB) donor acidity or acceptor basicity, acted as competitive inhibitors of thrombin by directly interacting with the active site of thrombin. A simple quantitative nanostructure-activity relationship model relating the surface substituent properties to the inhibition potential was then established for the six competitive inhibitors.Molecular docking analysis revealed that the intermolecular HB interactions were important for the specific binding of C_(60) NPs to the active site canyon, while the additional stability provided by the surface groups through van der Waals interaction also play a key role in the thrombin binding affinity of the NPs. Our results suggest that thrombin is a possible target of the surface-functionalized C_(60) NPs relevant to their anticoagulation effect. 展开更多
关键词 Thrombin C_(60) nanoparticle(NP) Surface modification Activity inhibition Quantitative nanostructure-activity relationship Molecular docking
原文传递
TiO_2-modified nano-egg-shell Pd catalyst for selective hydrogenation of acetylene 被引量:3
6
作者 Jin Gao Qiufeng Zhu Lixiong Wen 《Particuology》 SCIE EI CAS CSCD 2010年第3期251-256,共6页
Pd-based egg-shell nano-catalysts were prepared using porous hollow silica nanoparticles (PHSNs) as support, and the as-prepared catalysts were modified with TiO2 to promote their selectivity for hydro-genation of a... Pd-based egg-shell nano-catalysts were prepared using porous hollow silica nanoparticles (PHSNs) as support, and the as-prepared catalysts were modified with TiO2 to promote their selectivity for hydro-genation of acetylene. Pd nanoparticles were loaded evenly on PHSNs and TiO2 was loaded on the active Pd particles. The effects of reduction time and temperature and the amount of TiO2 added on catalytic per-formances were investigated by using a fixed-bed micro-reactor. It was found that the catalysts showed better performance when reduced at 300 ℃ than at 500℃, and if reduced for 1 h than 3 h. When the amount of Ti added was 6 times that of Pd, the catalyst showed the highest ethylene selectivity. 展开更多
关键词 Egg-shell nano-catalyst Porous hollow silica nanoparticles modification Selective hydrogenation Acetylene
原文传递
Electrosynthesis and catalytic properties of silver nano/microparticles with different morphologies 被引量:3
7
作者 Gaoqing Yuan Xiaoying Chang Guojun Zhu 《Particuology》 SCIE EI CAS CSCD 2011年第6期644-649,共6页
Electrosynthesis of powdery silver particles can be effectively carried out with an H20-oleic acid or an H20-glycerol mix solvent (volume ratio 1:1) as the electrolytic medium and AgN03 as the supporting electrolyt... Electrosynthesis of powdery silver particles can be effectively carried out with an H20-oleic acid or an H20-glycerol mix solvent (volume ratio 1:1) as the electrolytic medium and AgN03 as the supporting electrolyte. Experimental results indicate that the presence or absence of the surfactant sodium dodecyl sulfate (SDS) and the choice of electrolytic medium have a significant impact on the shape and size of the prepared Ag particles. With H20-glycerol as the electrolytic medium, spherical Ag nanoparticles can be obtained in the presence of SDS (0.6g/L), while an Ag sample electrodeposited without SDS has a dendritic microcrystalline structure. For the reduction of methyl orange (MO) and methylene blue (MB) with NaBH4 as the reducing agent, the spherical Ag nanoparticles exhibit much better catalytic activity than the dendritic Ag microparticles. Further investigations show that surface modification by an oleic acid medium could greatly improve the catalytic activity of the electrodeposited Ag particles for the reduction of MO and MB. 展开更多
关键词 Electrosynthesis Silver nanoparticles Surface modification Oleic acid
原文传递
Preparation and Characterization of Poly(amide-imide)/ZnO Nanocomposites Containing Pendent Benzoxazole and Benzimidazole Segments
8
作者 Hojjat Toiserkani 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第3期288-297,共10页
In the present investigation, novel poly(amid-imide)/zinc oxide nanocomposites(PAI/Zn O NCs) containing benzoxazole and benzimidazole pendent groups with different amounts of modified zinc oxide nanoparticles(Zn ... In the present investigation, novel poly(amid-imide)/zinc oxide nanocomposites(PAI/Zn O NCs) containing benzoxazole and benzimidazole pendent groups with different amounts of modified zinc oxide nanoparticles(Zn O NPs) were successfully prepared via the ex situ method. Poly(amid-imide)(PAI) was prepared by direct polycondensation of 2-[3,5-bis(N-trimellitimidoyl)phenyl]benzoxazole(DCA) with 5-(2-benzimidazole)-1,3-phenylenediamine(DAMI) and provided the polymeric matrix with well-designed groups. The surface of Zn O NPs was functionalized with 3-aminopropyltriethoxysilane(APS) coupling agent to have a better dispersion and enhancing possible interactions of NPs with functional groups of polymer matrix. The amount of APS bonded to the Zn O surface was determined by thermogravimetric analysis. PAI/Zn O nanocomposites were characterized by Fourier transform infrared spectroscopy(FTIR), X-ray diffraction(XRD), and scanning electron microscopy(SEM). SEM analysis showed that the modified Zn O nanoparticles were homogeneously dispersed in polymer matrix. In addition, TGA data indicated an enhancement of thermal stability of the nanocomposite compared with the neat polymer. 展开更多
关键词 Poly(amide-imide) ZnO nanoparticles Nanocomposites Surface modification Pendent group
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部