This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed tha...This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed that(i) the material parameters of the nanoplates obey a power-law variation in thickness and(ii) the uniform porosity exists in the nanoplates.The combined effects of viscoelasticity and shear deformation are considered by using the Kelvin-Voigt viscoelastic model and the refined higher-order shear deformation theory.The scale effects of the nanoplates are captured by employing nonlocal strain gradient theory(NSGT).The motion equations are calculated in accordance with Hamilton’s principle.Finally,the dispersion characteristics of the nanoplates are numerically determined by using a harmonic solution.The results indicate that the nonlocal parameters(NLPs) and length scale parameters(LSPs) have exactly the opposite effects on the wave frequency.In addition,it is found that the effect of porosity volume fractions(PVFs) on the wave frequency depends on the gradient indices and damping coefficients.When these two values are small,the wave frequency increases with the volume fraction.By contrast,at larger gradient index and damping coefficient values,the wave frequency decreases as the volume fraction increases.展开更多
The effect of reducing agents and surfactants on controlling the silver nanoplates was studied. Two reducing agents, trisodium citrate dehydrate (TSC) and potassium tartrate, were used to reduce the AgNO3 solution. In...The effect of reducing agents and surfactants on controlling the silver nanoplates was studied. Two reducing agents, trisodium citrate dehydrate (TSC) and potassium tartrate, were used to reduce the AgNO3 solution. In this redox system, polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS) and arabic gum were served as surfactants. The results showed that reducing agents and surfactants both act as the capping agent adhering to the certain facets of silver seeds to block this surface to grow. The relative intensity of reducing agents also takes an active part in influencing the growth rate and direction of silver seeds. It was also found that halides can accelerate the speed of Ostwald ripening by adding Cl?, Br? and I?into the aqueous and have some effects on the morphology of the nanoplates.展开更多
In this study,we showed that BiO Br nanoplates prepared at different pH values have substratedependent photocatalytic activities under visible-light irradiation. The BiO Br nanoplates synthesized at pH 1(BOB-1) degr...In this study,we showed that BiO Br nanoplates prepared at different pH values have substratedependent photocatalytic activities under visible-light irradiation. The BiO Br nanoplates synthesized at pH 1(BOB-1) degraded salicylic acid more effectively than did those obtained at pH 3(BOB-3),but the order of their photocatalytic activities in rhodamine B(RhB) degradation were reversed. Electrochemical Mott–Schottky and zeta-potential measurements showed that BOB-1 had a more positive valence band and lower surface charge,leading to superior photocatalytic activity in salicylic acid degradation under visible light. However,BOB-3 was more powerful in RhB degradation because larger numbers of superoxide radicals were generated via electron injection from the excited RhB to its more negative conduction band under visible-light irradiation; this was confirmed using active oxygen species measurements and electron spin resonance analysis. This study deepens our understanding of the origins of organic-pollutant-dependent photoreactivities of semiconductors,and will help in designing highly active photocatalysts for environmental remediation.展开更多
Silver nanoplates,with average thickness about 5 nm and average tunable size from 40 to 500 nm,were synthesized via a simple room-temperature solution-phase chemical reduction method in the presence of appropriate con...Silver nanoplates,with average thickness about 5 nm and average tunable size from 40 to 500 nm,were synthesized via a simple room-temperature solution-phase chemical reduction method in the presence of appropriate concentration of trisodium citrate and silver seeds.The optical in-plane dipole plasmon resonance bands of these silver plates could be tuned from 520 to 1100 nm.Control experiments were explored for understanding of the growth mechanism.It is found that both the amount of citrate ions and the small silver seeds added to the growth solution are the key to controlling the silver nanoplates without changing their thickness and crystal structure.Small silver seeds are found to play an important role in the formation of large thin silver nanoplates when poly(vinylpyrrolidone)(PVP) are used as capping agent.展开更多
In this paper, the free vibration of magneto- electro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory. The MEE nanoplate is assumed as all edges simply supported rect...In this paper, the free vibration of magneto- electro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory. The MEE nanoplate is assumed as all edges simply supported rectan gular plate subjected to the biaxial force, external electric potential, external magnetic potential, and temperature rise. By using the Hamilton's principle, the governing equations and boundary conditions are derived and then solved analytically to obtain the natural frequencies of MEE nanoplates. A parametric study is presented to examine the effect of the nonlocal parameter, thermo-magneto-electro-mechanical loadings and aspect ratio on the vibration characteristics of MEE nanoplates. It is found that the natural frequency is quite sensitive to the mechanical loading, electric loading and magnetic loading, while it is insensitive to the thermal loading.展开更多
The effects of the post-deformation annealing on the microstructural evolution of hot rolled Al7075 matrix composites reinforced with CNTs and GNPs were investigated.The multi-pass hot rolling was applied on the stir ...The effects of the post-deformation annealing on the microstructural evolution of hot rolled Al7075 matrix composites reinforced with CNTs and GNPs were investigated.The multi-pass hot rolling was applied on the stir cast samples.Annealing was then applied to the composites at 450℃ for 4 h.Microstructural evolution was examined by SEM,EDS,and EBSD techniques.EBSD data showed that the addition of 0.87 vol.%(GNPs+CNTs)significantly inhibited the occurrence of recrystallization.Also,in the composite with 0.96 vol.%CNTs,recrystallization was partially inhibited.Whereas,in composites with 0.92 vol.%of GNPs,the occurrence of recrystallization through particle stimulated nucleation(PSN)mechanism was significantly accelerated.The volume fraction of recrystallized grains depends significantly on the occurrence of PSN in the presence of reinforcements.The intensity and type of the main components of the texture as well as the FCC fibers depend on the type of reinforcement.展开更多
This paper attempts to investigate the buckling and post-buckling behaviors of piezoelectric nanoplate based on the nonlocal Mindlin plate model and yon Karman geometric nonlinearity. An external electric voltage and ...This paper attempts to investigate the buckling and post-buckling behaviors of piezoelectric nanoplate based on the nonlocal Mindlin plate model and yon Karman geometric nonlinearity. An external electric voltage and a uniform temperature rise are applied on the piezoelectric nanoplate. Both the uniaxial and biaxial mechanical compression forces will be considered in the buckling and post-buckling analysis. By substituting the energy functions into the equation of the minimum total potential energy principle, the governing equations are derived directly, and then discretized through the differential quadrature (DQ) method. The buckling and post-buckling responses of piezoelectric nanoplates are calculated by employing a direct iterative method under different boundary conditions. The numerical results are presented to show the influences of different factors including the nonlocal parameter, electric voltage, and temperature rise on the buckling and post-buckling responses.展开更多
Sliver nanoplates were prepared through a visible light induced reduction process by a reaction between sodium citrate and silver nitrate in an aqueous solvent at room temperature. UV-Vis spectra were employed to moni...Sliver nanoplates were prepared through a visible light induced reduction process by a reaction between sodium citrate and silver nitrate in an aqueous solvent at room temperature. UV-Vis spectra were employed to monitor the growth of the silver nanoplates. The resulting spectra indicated that, at an early stage, the products were spherical particles with planar nanoparticles appearing and growing subsequently. In the last stages of the process, some spherical particles were consumed by the growth of the nanoparticles, through an Ostwald ripening mechanism. Furthermore, it was found that the addition of either Poly(Vinyl Pyrrolidone) (PVP) or excessive citrate could stabilize the colloidal system effectively, and that rigorous stirring was necessary for the anticipant products, Introduction of a large quantities of sodium hydroxide can dramatically accelerate the reactive rate of the photoreduction process.展开更多
Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source a...Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.展开更多
We report a facile and reproducible approach toward rapid seedless synthesis of single crystalline gold nanoplates with edge length on the order of microns.The reaction is carried out by reducing gold ions with ascorb...We report a facile and reproducible approach toward rapid seedless synthesis of single crystalline gold nanoplates with edge length on the order of microns.The reaction is carried out by reducing gold ions with ascorbic acid in the presence of cetyltrimethylammonium bromide(CTAB).Reaction temperature and molar ratio of CTAB/Au are critical for the formation of gold nanoplates in a high yield,which are,respectively,optimized to be 85 °C and 6.The highest yield that can be achieved is 60 % at the optimized condition.The synthesis to achieve the microscaled gold nanoplates can be finished in less than 1 h under proper reaction conditions.Therefore,the reported synthesis approach is a time-and costeffective one.The gold nanoplates were further employed as the surface-enhanced Raman scattering substrates and investigated individually.Interestingly,only those adsorbed with gold nanoparticles exhibit pronounced Raman signals of probe molecules,where a maximum enhancement factor of 1.7 9 10~7 was obtained.The obtained Raman enhancement can be ascribed to the plasmon coupling between the gold nanoplate and the nanoparticle adsorbed onto it.展开更多
On account of the high theoretical capacity, high corrosion resistance, environmental benignity, abundant availability and low cost, the research on a-Fe_2O_3 has been gradually fastened on as promising anodes materia...On account of the high theoretical capacity, high corrosion resistance, environmental benignity, abundant availability and low cost, the research on a-Fe_2O_3 has been gradually fastened on as promising anodes materials toward lithium-ion batteries(LIBs). A high-performance anode for LIBs based on α-Fe_2O_3 nanoplates have been selectively prepared. The α-Fe_2O_3 nanoplates can be synthesized with iron ionbased ionic liquid as iron source and template. The α-Fe_2O_3 nanoplates as the anode of LIBs can display high capacity of around1950 mAh g^(-1) at 0.5 A g^(-1) which have exceeded the theoretical capacity of α-Fe_2O_3. On account of unique nanoplate structures and gum arabic as binder, the α-Fe_2O_3 nanoplates also exhibit high rate capability and excellent cycling performance.展开更多
In this work, SiO2 nanoplates with opened macroporous structure on carbon layer (C-mSiO2) have been obtained by dissolving and subsequent ingrowing the outer solid SiO2 layer of the aerosol-based C-SiO2 double-shell...In this work, SiO2 nanoplates with opened macroporous structure on carbon layer (C-mSiO2) have been obtained by dissolving and subsequent ingrowing the outer solid SiO2 layer of the aerosol-based C-SiO2 double-shell hollow spheres. Subsequently, triple-shell C-mSiO2-C hollow spheres were successfully prepared after coating the C- mSiO2 templates by the carbon layer from the carbonization of sucrose. When being applied as the anode material fur lithium-ion batteries, the C-mSiO2-C triple-shell hollow spheres deliver a high capacity of 501 mA. h.g- 1 after 100 cycles at 500 mA.g-1 (based on the total mass of silica and the two carbon shells), which is higher than those of C-mSiO2 (391 mA.h.g 1) spheres with an outer porous SiO2 layer, C-SiO2-C (370 mA-h.g-1) hollow spheres with a middle solid Si02 layer, and C-SiO2 (319.8 mA·h-g-1) spheres with an outer solid SiO2 layer. In addition, the battery still delivers a high capacity of 403 mA· h· g- 1 at a current density of 1000 mA· g- 1 after 400 cycles. The good electrochemical performance can be attributed to the high surface area (246.7 m2·g- 1 ) and pore volume (0.441 cm3· g-1) of the anode materials, as well as the unique structure of the outer and inner carbon layer which not only enhances electrical conductivity, structural stability, but buffers volume change of the intermediate SiO2 layer during repeated charge-discharge processes. Furthermore, the SiO2 nanoplates with opened macroporous structure facilitate the electrolyte transport and electrochemical reaction.展开更多
A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity...A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity theory is used to capture the small length scale effect on the static behaviors of these.The perturbation method is used to expand the 3D nonlocal elasticity problems as a series of two-dimensional(2D)nonlocal plate problems,the governing equations of which for various order problems retain the same differential operators as those of the nonlocal classical plate theory(CST),although with different nonhomogeneous terms.Expanding the primary field variables of each order as the double Fourier series functions in the in-plane directions,we can obtain the Navier solutions of the leading-order problem,and the higher-order modifications can then be determined in a hierarchic and consistent manner.Some benchmark solutions for the static analysis of isotropic and orthotropic nanoplates and GSs subjected to sinusoidally and uniformly distributed loads are given to demonstrate the performance of the 3D nonlocal asymptotic theory.展开更多
We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that bot...We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that both nanoplates possess high conductivity and show metallic-like behavior. Compared to the smooth nanoplate, the spiral-type one exhibits the higher carrier concentration and lower mobility. CAFM characterization reveals that the conductance at the screw-dislocation edge is even higher than that on the terrace, implying that the dislocation can supply excess carriers to compensate the low mobility and achieve high conductivity. The unique structure and electrical properties make the spiral-type Bi2 Se3 nanoplates a good candidate for catalysts and gas sensors.展开更多
Palladium-supported cobalt hydroxide(Co(OH)_(2)-Pd) nanoplates were fabricated in an aqueous solution and employed as a catalyst for the reduction of 4-nitrophenol.For the preparation of Co(OH)2-Pd,Pd nanoparticles we...Palladium-supported cobalt hydroxide(Co(OH)_(2)-Pd) nanoplates were fabricated in an aqueous solution and employed as a catalyst for the reduction of 4-nitrophenol.For the preparation of Co(OH)2-Pd,Pd nanoparticles were anchored on the Co(OH)_(2) nanoplates after the reduction of Na;PdCl;by ascorbic acid in the absence of a stabilizer at room temperature.The observations under transmission and scanning electron microscopy reveal that Pd nanoparticles with a size of 2-5 nm are uniformly dispersed on the surface of the Co(OH)_(2) nanoplates.In catalytic test,the conversion of 4-nitrophenol to 4-aminophenol is completed within 6 min in the presence of Co(OH)_(2)-Pd(1000) nanoplates with2.18 at.% Pd,and the corresponding kinetic constant is 0.0089 s;in the first test.The catalyst retains relatively high activity after several cycles.The results demonstrate that the Co(OH)_(2)-Pd(1000) nanoplates exhibit high catalytic activity toward the reduction of 4-nitrophenol in the presence of NaBH;.展开更多
The time-dependence evolution of the extinction spectra of the silver nanoplates is studied to analyze the underlying physical mechanism of the growth process. As the synthesis cycles increase, the wavelength of the a...The time-dependence evolution of the extinction spectra of the silver nanoplates is studied to analyze the underlying physical mechanism of the growth process. As the synthesis cycles increase, the wavelength of the absorption peak is first blue-shifted and then is followed by the red shift, attributing to the mode alteration of the longitudinal surface plasmon resonance of the silver nanoplates. The capping agents are also optimized for the convenient and speedy growth of the large integrated Ag nanostructure. These observations expand the comprehensive understanding of plasmon resonance of the Ag nanoplates, and give a better manipulation of their applications in the plasmonie nanodevices.展开更多
We herein report a one-step, wet-chemical approach to synthesizing gold nanoplates in large quantities via the AuCl4^- thermal reduction process by aniline, without introducing additional capping agent or surfactant. ...We herein report a one-step, wet-chemical approach to synthesizing gold nanoplates in large quantities via the AuCl4^- thermal reduction process by aniline, without introducing additional capping agent or surfactant. It is found that the reduction kinetics of AuCl4^- is greatly altered by varying the initial molar ratio of aniline to AuCl4^-. Moreover, further investigation reveals that the insitu formed polyaniline could serve effectively as a capping agent to preferably adsorb the { 1 1 1 } facets of gold crystals during a slow reduction process, directing the formation of gold nanoplates.展开更多
In situ high-pressure angle dispersive x-ray diffraction experiments using synchrotron radiation on Te nanoplates were carried out with a diamond anvil cell at room temperature. The results show that Te-Ⅰ with a trig...In situ high-pressure angle dispersive x-ray diffraction experiments using synchrotron radiation on Te nanoplates were carried out with a diamond anvil cell at room temperature. The results show that Te-Ⅰ with a trigonal structure transforms to triclinic Te-Ⅱ at about 4.9 GPa, Te-Ⅱ transforms to monoclinic Te-Ⅲ at about 8.0 GPa, Te-Ⅲ turns to rhombohedral Te-Ⅳ at about 23.8 GPa, and Te-Ⅳ changes to body centered cubic Te-Ⅴ at 27.6 GPa. The bulk moduli B0 of Te nanoplates are higher than those of Te bulk materials.展开更多
This paper aims to obtain the simple closed-form results for the combined effects of surface elasticity, initial stress/ strain, and material Poisson ratio on the bending stiffness, natural frequency and buckling forc...This paper aims to obtain the simple closed-form results for the combined effects of surface elasticity, initial stress/ strain, and material Poisson ratio on the bending stiffness, natural frequency and buckling force of nanowires and nano-plates. The results demonstrate that all these properties of nanowires or nanoplates can be designed either very sensitive or not sensitive at all to the amplitude of an applied electric potential;show how much of those properties can be controlled to vary;and thus provide a reliable guide to the measurement of the Young’s modulus of nanowires/nanoplates and to the design of nano-devices, such as nano-sensors or the cantilever of an AFM.展开更多
Nowadays, finding cheap and non-toxic materials able to reversibly store high amounts of hydrogen is a challenge in the renewable energy field. Metal sulfides seem to be promising candidates to this purpose. Titanium ...Nowadays, finding cheap and non-toxic materials able to reversibly store high amounts of hydrogen is a challenge in the renewable energy field. Metal sulfides seem to be promising candidates to this purpose. Titanium sulfides are reported to be particularly interesting but their ability to store hydrogen remains unclear. In this work, titanium based sulfides TiS2 and TiS3 with two-dimensional nanostructures have been synthesized by solid-gas reaction between titanium powder and sulfur at temperatures between 500-600℃. The morphology and crystal structure of Ti-sulfides were characterized by SEM (scanning electronic microscopy) equipped with EDX (energy dispersion X-ray) and XRD (X-ray diffraction), respectively. Their thermal stability was examined by TGA (thermal gravimetric analysis). Their hydrogenation properties have been determined by manometric means using a Sieverts system and by DSC-HP (high-pressure differential scanning calorimetric). Ti-sulfides hardly absorb/adsorb hydrogen for hydrogen pressures up to 80 bar and reaction temperatures up to 300℃.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11502218 and 11672252)。
文摘This study investigates the size-dependent wave propagation behaviors under the thermoelectric loads of porous functionally graded piezoelectric(FGP) nanoplates deposited in a viscoelastic foundation.It is assumed that(i) the material parameters of the nanoplates obey a power-law variation in thickness and(ii) the uniform porosity exists in the nanoplates.The combined effects of viscoelasticity and shear deformation are considered by using the Kelvin-Voigt viscoelastic model and the refined higher-order shear deformation theory.The scale effects of the nanoplates are captured by employing nonlocal strain gradient theory(NSGT).The motion equations are calculated in accordance with Hamilton’s principle.Finally,the dispersion characteristics of the nanoplates are numerically determined by using a harmonic solution.The results indicate that the nonlocal parameters(NLPs) and length scale parameters(LSPs) have exactly the opposite effects on the wave frequency.In addition,it is found that the effect of porosity volume fractions(PVFs) on the wave frequency depends on the gradient indices and damping coefficients.When these two values are small,the wave frequency increases with the volume fraction.By contrast,at larger gradient index and damping coefficient values,the wave frequency decreases as the volume fraction increases.
基金Project(51373097)supported by The National Natural Science Foundation of China
文摘The effect of reducing agents and surfactants on controlling the silver nanoplates was studied. Two reducing agents, trisodium citrate dehydrate (TSC) and potassium tartrate, were used to reduce the AgNO3 solution. In this redox system, polyvinylpyrrolidone (PVP), sodium dodecyl sulfate (SDS) and arabic gum were served as surfactants. The results showed that reducing agents and surfactants both act as the capping agent adhering to the certain facets of silver seeds to block this surface to grow. The relative intensity of reducing agents also takes an active part in influencing the growth rate and direction of silver seeds. It was also found that halides can accelerate the speed of Ostwald ripening by adding Cl?, Br? and I?into the aqueous and have some effects on the morphology of the nanoplates.
基金supported by the National Natural Science Funds for Distinguished Young Scholars(21425728)the National Natural Science Foundation of China(21173093+4 种基金211770482127308821477044)the Key Project of Natural Science Foundation of Hubei Province(2013CFA114)the the Fundamental Research Funds for the Central Universities(CCNU14Z01001 CCNU14KFY002)~~
文摘In this study,we showed that BiO Br nanoplates prepared at different pH values have substratedependent photocatalytic activities under visible-light irradiation. The BiO Br nanoplates synthesized at pH 1(BOB-1) degraded salicylic acid more effectively than did those obtained at pH 3(BOB-3),but the order of their photocatalytic activities in rhodamine B(RhB) degradation were reversed. Electrochemical Mott–Schottky and zeta-potential measurements showed that BOB-1 had a more positive valence band and lower surface charge,leading to superior photocatalytic activity in salicylic acid degradation under visible light. However,BOB-3 was more powerful in RhB degradation because larger numbers of superoxide radicals were generated via electron injection from the excited RhB to its more negative conduction band under visible-light irradiation; this was confirmed using active oxygen species measurements and electron spin resonance analysis. This study deepens our understanding of the origins of organic-pollutant-dependent photoreactivities of semiconductors,and will help in designing highly active photocatalysts for environmental remediation.
基金Project (10804101) supported by the National Nature Science Foundation of ChinaProject (2007CB815102) supported by the National Basic Research Program of ChinaProject (2007B08007) supported by the Science and Technology Development Foundation of Chinese Academy of Engineering Physics
文摘Silver nanoplates,with average thickness about 5 nm and average tunable size from 40 to 500 nm,were synthesized via a simple room-temperature solution-phase chemical reduction method in the presence of appropriate concentration of trisodium citrate and silver seeds.The optical in-plane dipole plasmon resonance bands of these silver plates could be tuned from 520 to 1100 nm.Control experiments were explored for understanding of the growth mechanism.It is found that both the amount of citrate ions and the small silver seeds added to the growth solution are the key to controlling the silver nanoplates without changing their thickness and crystal structure.Small silver seeds are found to play an important role in the formation of large thin silver nanoplates when poly(vinylpyrrolidone)(PVP) are used as capping agent.
基金supported by the Australian Research Council (DP130104358)Fundamental Research Funds for the Central Universities under Grant number 2013JBM009+1 种基金Program for New Century Excellent Talents in University under Grant number NCET-13-0656Beijing Higher Education Young Elite Teacher Project under Grant number YETP0562
文摘In this paper, the free vibration of magneto- electro-elastic (MEE) nanoplates is investigated based on the nonlocal theory and Kirchhoff plate theory. The MEE nanoplate is assumed as all edges simply supported rectan gular plate subjected to the biaxial force, external electric potential, external magnetic potential, and temperature rise. By using the Hamilton's principle, the governing equations and boundary conditions are derived and then solved analytically to obtain the natural frequencies of MEE nanoplates. A parametric study is presented to examine the effect of the nonlocal parameter, thermo-magneto-electro-mechanical loadings and aspect ratio on the vibration characteristics of MEE nanoplates. It is found that the natural frequency is quite sensitive to the mechanical loading, electric loading and magnetic loading, while it is insensitive to the thermal loading.
基金the Sahand University of Technology and Ghent University for the support of this research。
文摘The effects of the post-deformation annealing on the microstructural evolution of hot rolled Al7075 matrix composites reinforced with CNTs and GNPs were investigated.The multi-pass hot rolling was applied on the stir cast samples.Annealing was then applied to the composites at 450℃ for 4 h.Microstructural evolution was examined by SEM,EDS,and EBSD techniques.EBSD data showed that the addition of 0.87 vol.%(GNPs+CNTs)significantly inhibited the occurrence of recrystallization.Also,in the composite with 0.96 vol.%CNTs,recrystallization was partially inhibited.Whereas,in composites with 0.92 vol.%of GNPs,the occurrence of recrystallization through particle stimulated nucleation(PSN)mechanism was significantly accelerated.The volume fraction of recrystallized grains depends significantly on the occurrence of PSN in the presence of reinforcements.The intensity and type of the main components of the texture as well as the FCC fibers depend on the type of reinforcement.
基金supported by the National Natural Science Foundation of China (11272040 and 11322218)
文摘This paper attempts to investigate the buckling and post-buckling behaviors of piezoelectric nanoplate based on the nonlocal Mindlin plate model and yon Karman geometric nonlinearity. An external electric voltage and a uniform temperature rise are applied on the piezoelectric nanoplate. Both the uniaxial and biaxial mechanical compression forces will be considered in the buckling and post-buckling analysis. By substituting the energy functions into the equation of the minimum total potential energy principle, the governing equations are derived directly, and then discretized through the differential quadrature (DQ) method. The buckling and post-buckling responses of piezoelectric nanoplates are calculated by employing a direct iterative method under different boundary conditions. The numerical results are presented to show the influences of different factors including the nonlocal parameter, electric voltage, and temperature rise on the buckling and post-buckling responses.
文摘Sliver nanoplates were prepared through a visible light induced reduction process by a reaction between sodium citrate and silver nitrate in an aqueous solvent at room temperature. UV-Vis spectra were employed to monitor the growth of the silver nanoplates. The resulting spectra indicated that, at an early stage, the products were spherical particles with planar nanoparticles appearing and growing subsequently. In the last stages of the process, some spherical particles were consumed by the growth of the nanoparticles, through an Ostwald ripening mechanism. Furthermore, it was found that the addition of either Poly(Vinyl Pyrrolidone) (PVP) or excessive citrate could stabilize the colloidal system effectively, and that rigorous stirring was necessary for the anticipant products, Introduction of a large quantities of sodium hydroxide can dramatically accelerate the reactive rate of the photoreduction process.
基金supported by the National Key Research and Development Program of China(2016YFC0102700)National Natural Science Foundation of China(21171117,21271181,21473240,and 81270209)+1 种基金Medical-Engineering Crossover Fund of Shanghai Jiao Tong University(YG2015MS51 and YG2014MS66)the Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning
文摘Biosynthesis of gold nanostructures has drawn increasing concerns because of its green and sustainable synthetic process. However, biosynthesis of gold nanoplates is still a challenge because of the expensive source and difficulties of controllable formation of morphology and size. Herein, one-pot biosynthesis of gold nanoplates is proposed, in which cheap yeast was extracted as a green precursor. The morphologies and sizes of the gold nanostructures can be controlled via varying the pH value of the biomedium. In acid condition, gold nanoplates with side length from 1300 ± 200 to 300 ± 100 nm and height from 18 to 15 nm were obtained by increasing the pH value. Whereas, in neutral or basic condition, only gold nanoflowers and nanoparticles were obtained. It was determined that organic molecules, such as succinic acid, lactic acid, malic acid, and glutathione, which are generated in metabolism process, played important role in the reduction of gold ions. Besides, it was found that the gold nanoplates exhibited plasmonic property with prominent dipole infrared resonance in near-infrared region, indicating their potential in surface plasmon-enhanced applications, such as bioimaging and photothermal therapy.
基金supported by the National Natural Science Foundation of China(NSFC)(Grants 21271181 and 21473240)Ministry of Science and Technology of China(Intergovernmental S&T Cooperation Project,Grant No.6–10)the Thousand Youth Talents Program of China
文摘We report a facile and reproducible approach toward rapid seedless synthesis of single crystalline gold nanoplates with edge length on the order of microns.The reaction is carried out by reducing gold ions with ascorbic acid in the presence of cetyltrimethylammonium bromide(CTAB).Reaction temperature and molar ratio of CTAB/Au are critical for the formation of gold nanoplates in a high yield,which are,respectively,optimized to be 85 °C and 6.The highest yield that can be achieved is 60 % at the optimized condition.The synthesis to achieve the microscaled gold nanoplates can be finished in less than 1 h under proper reaction conditions.Therefore,the reported synthesis approach is a time-and costeffective one.The gold nanoplates were further employed as the surface-enhanced Raman scattering substrates and investigated individually.Interestingly,only those adsorbed with gold nanoparticles exhibit pronounced Raman signals of probe molecules,where a maximum enhancement factor of 1.7 9 10~7 was obtained.The obtained Raman enhancement can be ascribed to the plasmon coupling between the gold nanoplate and the nanoparticle adsorbed onto it.
基金financially supported by the National Natural Science Foundation of China (No.21506081,21506077)Jiangsu University Scientific Research Funding (15JDG048)+1 种基金Chinese Postdoctoral Foundation (2016M590420)Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘On account of the high theoretical capacity, high corrosion resistance, environmental benignity, abundant availability and low cost, the research on a-Fe_2O_3 has been gradually fastened on as promising anodes materials toward lithium-ion batteries(LIBs). A high-performance anode for LIBs based on α-Fe_2O_3 nanoplates have been selectively prepared. The α-Fe_2O_3 nanoplates can be synthesized with iron ionbased ionic liquid as iron source and template. The α-Fe_2O_3 nanoplates as the anode of LIBs can display high capacity of around1950 mAh g^(-1) at 0.5 A g^(-1) which have exceeded the theoretical capacity of α-Fe_2O_3. On account of unique nanoplate structures and gum arabic as binder, the α-Fe_2O_3 nanoplates also exhibit high rate capability and excellent cycling performance.
基金Supported by the National Science Funding for Distinguished Young Scholars of China(21125628)National Natural Science Foundation of China(21476044)the Fundamental Research Funds for the Central Universities(DUT15QY08)
文摘In this work, SiO2 nanoplates with opened macroporous structure on carbon layer (C-mSiO2) have been obtained by dissolving and subsequent ingrowing the outer solid SiO2 layer of the aerosol-based C-SiO2 double-shell hollow spheres. Subsequently, triple-shell C-mSiO2-C hollow spheres were successfully prepared after coating the C- mSiO2 templates by the carbon layer from the carbonization of sucrose. When being applied as the anode material fur lithium-ion batteries, the C-mSiO2-C triple-shell hollow spheres deliver a high capacity of 501 mA. h.g- 1 after 100 cycles at 500 mA.g-1 (based on the total mass of silica and the two carbon shells), which is higher than those of C-mSiO2 (391 mA.h.g 1) spheres with an outer porous SiO2 layer, C-SiO2-C (370 mA-h.g-1) hollow spheres with a middle solid Si02 layer, and C-SiO2 (319.8 mA·h-g-1) spheres with an outer solid SiO2 layer. In addition, the battery still delivers a high capacity of 403 mA· h· g- 1 at a current density of 1000 mA· g- 1 after 400 cycles. The good electrochemical performance can be attributed to the high surface area (246.7 m2·g- 1 ) and pore volume (0.441 cm3· g-1) of the anode materials, as well as the unique structure of the outer and inner carbon layer which not only enhances electrical conductivity, structural stability, but buffers volume change of the intermediate SiO2 layer during repeated charge-discharge processes. Furthermore, the SiO2 nanoplates with opened macroporous structure facilitate the electrolyte transport and electrochemical reaction.
文摘A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity theory is used to capture the small length scale effect on the static behaviors of these.The perturbation method is used to expand the 3D nonlocal elasticity problems as a series of two-dimensional(2D)nonlocal plate problems,the governing equations of which for various order problems retain the same differential operators as those of the nonlocal classical plate theory(CST),although with different nonhomogeneous terms.Expanding the primary field variables of each order as the double Fourier series functions in the in-plane directions,we can obtain the Navier solutions of the leading-order problem,and the higher-order modifications can then be determined in a hierarchic and consistent manner.Some benchmark solutions for the static analysis of isotropic and orthotropic nanoplates and GSs subjected to sinusoidally and uniformly distributed loads are given to demonstrate the performance of the 3D nonlocal asymptotic theory.
文摘We systematically investigated the electrical nanoplates through field effect transistor and properties of spiral-type and smooth Bi2Se3 conductive atomic force microscopy (CAFM) measurement. It is observed that both nanoplates possess high conductivity and show metallic-like behavior. Compared to the smooth nanoplate, the spiral-type one exhibits the higher carrier concentration and lower mobility. CAFM characterization reveals that the conductance at the screw-dislocation edge is even higher than that on the terrace, implying that the dislocation can supply excess carriers to compensate the low mobility and achieve high conductivity. The unique structure and electrical properties make the spiral-type Bi2 Se3 nanoplates a good candidate for catalysts and gas sensors.
基金the financial supports from the National Natural Science Foundation of China (Nos. 51974116, 51874128)the Science Foundation of Hunan Province, China (Nos. 2020JJ4273, 2020JJ5130)。
文摘Palladium-supported cobalt hydroxide(Co(OH)_(2)-Pd) nanoplates were fabricated in an aqueous solution and employed as a catalyst for the reduction of 4-nitrophenol.For the preparation of Co(OH)2-Pd,Pd nanoparticles were anchored on the Co(OH)_(2) nanoplates after the reduction of Na;PdCl;by ascorbic acid in the absence of a stabilizer at room temperature.The observations under transmission and scanning electron microscopy reveal that Pd nanoparticles with a size of 2-5 nm are uniformly dispersed on the surface of the Co(OH)_(2) nanoplates.In catalytic test,the conversion of 4-nitrophenol to 4-aminophenol is completed within 6 min in the presence of Co(OH)_(2)-Pd(1000) nanoplates with2.18 at.% Pd,and the corresponding kinetic constant is 0.0089 s;in the first test.The catalyst retains relatively high activity after several cycles.The results demonstrate that the Co(OH)_(2)-Pd(1000) nanoplates exhibit high catalytic activity toward the reduction of 4-nitrophenol in the presence of NaBH;.
基金Supported by the Natural Science Foundation of Hubei Province under Grant No 2014CFB554
文摘The time-dependence evolution of the extinction spectra of the silver nanoplates is studied to analyze the underlying physical mechanism of the growth process. As the synthesis cycles increase, the wavelength of the absorption peak is first blue-shifted and then is followed by the red shift, attributing to the mode alteration of the longitudinal surface plasmon resonance of the silver nanoplates. The capping agents are also optimized for the convenient and speedy growth of the large integrated Ag nanostructure. These observations expand the comprehensive understanding of plasmon resonance of the Ag nanoplates, and give a better manipulation of their applications in the plasmonie nanodevices.
基金supported by the National Natural Science Foundation of China(Nos.90406023,60571031 and 60501009)the National Important Science Research Program of China(No.2006CB933206).
文摘We herein report a one-step, wet-chemical approach to synthesizing gold nanoplates in large quantities via the AuCl4^- thermal reduction process by aniline, without introducing additional capping agent or surfactant. It is found that the reduction kinetics of AuCl4^- is greatly altered by varying the initial molar ratio of aniline to AuCl4^-. Moreover, further investigation reveals that the insitu formed polyaniline could serve effectively as a capping agent to preferably adsorb the { 1 1 1 } facets of gold crystals during a slow reduction process, directing the formation of gold nanoplates.
基金supported by the State Key Development Program for Basic Research of China(Grant No.2012CB932302)the National Natural Science Foundation of China(Grant Nos.10974235 and 11174336)
文摘In situ high-pressure angle dispersive x-ray diffraction experiments using synchrotron radiation on Te nanoplates were carried out with a diamond anvil cell at room temperature. The results show that Te-Ⅰ with a trigonal structure transforms to triclinic Te-Ⅱ at about 4.9 GPa, Te-Ⅱ transforms to monoclinic Te-Ⅲ at about 8.0 GPa, Te-Ⅲ turns to rhombohedral Te-Ⅳ at about 23.8 GPa, and Te-Ⅳ changes to body centered cubic Te-Ⅴ at 27.6 GPa. The bulk moduli B0 of Te nanoplates are higher than those of Te bulk materials.
文摘This paper aims to obtain the simple closed-form results for the combined effects of surface elasticity, initial stress/ strain, and material Poisson ratio on the bending stiffness, natural frequency and buckling force of nanowires and nano-plates. The results demonstrate that all these properties of nanowires or nanoplates can be designed either very sensitive or not sensitive at all to the amplitude of an applied electric potential;show how much of those properties can be controlled to vary;and thus provide a reliable guide to the measurement of the Young’s modulus of nanowires/nanoplates and to the design of nano-devices, such as nano-sensors or the cantilever of an AFM.
文摘Nowadays, finding cheap and non-toxic materials able to reversibly store high amounts of hydrogen is a challenge in the renewable energy field. Metal sulfides seem to be promising candidates to this purpose. Titanium sulfides are reported to be particularly interesting but their ability to store hydrogen remains unclear. In this work, titanium based sulfides TiS2 and TiS3 with two-dimensional nanostructures have been synthesized by solid-gas reaction between titanium powder and sulfur at temperatures between 500-600℃. The morphology and crystal structure of Ti-sulfides were characterized by SEM (scanning electronic microscopy) equipped with EDX (energy dispersion X-ray) and XRD (X-ray diffraction), respectively. Their thermal stability was examined by TGA (thermal gravimetric analysis). Their hydrogenation properties have been determined by manometric means using a Sieverts system and by DSC-HP (high-pressure differential scanning calorimetric). Ti-sulfides hardly absorb/adsorb hydrogen for hydrogen pressures up to 80 bar and reaction temperatures up to 300℃.