Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional path...Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer,leading to a substantial enhancement of near-field radiative heat transfer(NFRHT).Being a direct bandgap semiconductor,GaN has high thermal conductivity and stable resistance at high temperatures,and holds significant potential for applications in optoelectronic devices.Indeed,study of NFRHT between nanoporous GaN films is currently lacking,hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT.In this work,we delve into the NFRHT of GaN nanoporous films in terms of gap distance,GaN film thickness and the vacuum filling ratio.The results demonstrate a 27.2%increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5.Moreover,the spectral heat flux exhibits redshift with increase in the vacuum filling ratio.To be more precise,the peak of spectral heat flux moves fromω=1.31×10^(14)rad·s^(-1)toω=1.23×10^(14)rad·s^(-1)when the vacuum filling ratio changes from f=0.1 to f=0.5;this can be attributed to the excitation of surface phonon polaritons.The introduction of graphene into these configurations can highly enhance the NFRHT,and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio,which can be explained by the excitation of surface plasmon polaritons.These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control,management and thermal modulation.展开更多
Gas flow properties in nanopores are significantly determined by the flow patterns. Slug flow pattern is a potential water–gas two phase flow pattern, in which gas molecules flow in form of gas slugs and water molecu...Gas flow properties in nanopores are significantly determined by the flow patterns. Slug flow pattern is a potential water–gas two phase flow pattern, in which gas molecules flow in form of gas slugs and water molecules separate gas slugs. Considering water slippage, a portion of water molecules accumulates at the wall with lower mobility, while the remaining water molecules take the shape of a water bridge. Adopting foam apparent viscosity model to represent slug rheological behavior, how water bridge disturbs on gas flow capacity is estimated. The results are compared with the water–gas two phase flow model that assumes annular flow pattern as well as the single gas flow model without the consideration of water. The comparison illustrates that gas molecular movement is significantly hindered by flow space reduction and loss of gas slippage. The impact from water phase of slug flow pattern is more significant than that of annular flow pattern on gas flow capacity. It is discovered that larger nanopores improve gas flow capacity while maintaining bulk water layer thickness and increasing water bridge thickness tend to reduce gas transport ability. A better understanding of the structure and transport of water and gas molecules is conducive to figure out the specific gas–water flow behavior and predict shale gas production.展开更多
Nanoporous silica films were prepared by sol-gel process with base, acid and base/acid two-step catalysis.Transmission electron microscope (TEM) and particle size analyzer were used to characterize the microstructur...Nanoporous silica films were prepared by sol-gel process with base, acid and base/acid two-step catalysis.Transmission electron microscope (TEM) and particle size analyzer were used to characterize the microstructure and the particle size distribution of the sols. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectroscopic ellipsometer were used to characterize the surface microstructure and the optical properties of the silica films. Stability of the sols during long-term storage was investigated. Moreover,the dispersion relation of the optical constants of the silica films, and the control of the microstructure and properties of the films by changing the catalysis conditions during sol-gel process were also discussed.展开更多
A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films inv...A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SELLS). R was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.展开更多
Nanoporous BiVO;thin films were deposited using reactive magnetron sputtering in Ar and O;atmosphere, on various substrates, employing pulsed direct-current(DC) power supplies applied to metallic Bi and V targets for ...Nanoporous BiVO;thin films were deposited using reactive magnetron sputtering in Ar and O;atmosphere, on various substrates, employing pulsed direct-current(DC) power supplies applied to metallic Bi and V targets for rapid deposition. The procedure was followed by a post-annealing treatment in air to crystallize the photoactive monoclinic scheelite structure. The influence of total pressure and substrate on the crystal structure, morphology, microstructure, optical and photocatalytic properties of the films was investigated. The crystallization of monoclinic scheelite structure deposited on fused silica substrate starts at 250 ℃ and the films are stable up to 600 ℃. The morphology of the films is rather dense, despite at the high sputtering pressure(>2 Pa), with embedded nanopores. Among the thin films deposited on fused silica, the one deposited at 4.5 Pa exhibits the highest porosity(52%), with the lowest bandgap(2.44 eV) and it shows the highest photocatalytic activity in the degradation of Rhodamine-B(26% after 7 h) under visible light irradiation. The film deposited on the silicon substrate exhibits the highest photoactivity(53% after 7 h). Lack of hypsochromic shift in the UV-Vis temporal absorption spectra shows the dominance of the chromophore cleavage pathway in the photodecomposition.展开更多
The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morph...The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morphology and high porosity, nanoporous TiO2 films were fabricated on conducting glass (FTO) substrates, Ti thin films (1.5-2 gin) were deposited on conducting glass (FTO) substrates via the DC sputtering method, and then electrochemically anodized in NH4F/ethylene glycol solution. The crystalline structure and surface morphology of the samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The influences of anodizing potential, electrolyte composition, and pH value on the surface morphology of nanoporous TiO2 films were extensively studied. The growth mechanism of nanoporous TiO2 films was discussed by current density variations with anodizing time. The results demonstrate that nanoporous TiO2 films with high porosity and three-dimensional (3D) networks are observed at 30 V, when the NH4F concentration in ethylene glycol solution is 0.3% (mass fraction) and the electrolyte pH value is 5.0.展开更多
Barium strontium titanate (Ba0.5Sr0.5TiO3, BST)/silicon nanoporous pillar array (Si-NPA) thin films were prepared by a spin-coating/annealing technique based on Si-NPA with micro/nano-structure. Both the isomer co...Barium strontium titanate (Ba0.5Sr0.5TiO3, BST)/silicon nanoporous pillar array (Si-NPA) thin films were prepared by a spin-coating/annealing technique based on Si-NPA with micro/nano-structure. Both the isomer conversion of acetylacetone and the network structure combined by enol and Ti-alkoxide facilitate the formation of the BST sol and the subsequent crystallization. Before the perovskite BST begins to form, the intermediate phase (Ba, Sr)Ti2OsCO3 is found. The boundary between BST and Si-NPA is of clarity and little interface diffusion, disclosing that Si-NPA is an ideal template substrate in the preparation of multifunctional composite films.展开更多
Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the indi...Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.展开更多
Colloidal silica sol is formed by a novel hydrolyzing procedure of tetraethyl orthosilicate(TEOS) catalyzing with NH 3 ·H 2 O in aqueous mediums. Glycerol, combining with the hydrolyzed intermediates of ...Colloidal silica sol is formed by a novel hydrolyzing procedure of tetraethyl orthosilicate(TEOS) catalyzing with NH 3 ·H 2 O in aqueous mediums. Glycerol, combining with the hydrolyzed intermediates of TEOS, controls growing of the silica particles; poly(vinyl vinyl alcohol makes the colloidal silica sol with polymeric structure and spinning, thermal strain makes the gel silica film changed into a nanoporous structure with diameter ranging 50-150 nm. Morphologies of the nanoporous silica film have been characterized; the porosities (%) is 32-64; the average dielectric constant at 1MHz region is 2.0 and 2.1; the thermal conductivity is less than 0.8. Chemical mechanism of the sol gel process is discussed.展开更多
The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion c...The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is inves- tigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black DiamondTM samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films.展开更多
This work investigated C2F6/O2/Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the in...This work investigated C2F6/O2/Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the increase in the low-frequency (LF) power led to an increased ion impact, prompting the dissociation of C2F6 with higher reaction energy. As a result, fluorocarbon radicals with a high F/C ratio decreased. The increase in the discharge pressure led to a decrease in the electron temperature, resulting in the decrease of C2F6 dissociation. For the C2F6/O2/Ar plasma, the increase in the LF power prompted the reaction between 02 and C2F6, resulting in the elimination of CF3 and CF2 radicals, and the production of an F-rich plasma environment. The F-rich plasma improved the etching characteristics of SiCOH low-k films, leading to a high etching rate and a smooth etched surface.展开更多
The characteristics of SiCOH low dielectric constant film treated by a trifluromethane (CHF3) electron cyclotron resonance (ECR) plasma was investigated. The flat-band voltage VFB and leakage current of the Cu/SiC...The characteristics of SiCOH low dielectric constant film treated by a trifluromethane (CHF3) electron cyclotron resonance (ECR) plasma was investigated. The flat-band voltage VFB and leakage current of the Cu/SiCOH/Si structure, and the hydrophobic property of the SiCOH film were obtained by the measurements of capacitance-voltage, current-voltage and water contact angle. The structures of the SiCOH film were also analyzed by Fourier transform infrared spectroscopy and atomic force microscopy. The CHF3 plasma treatment of the SiCOH film led to a reduction in both the fiat-band voltage VFB shift and leakage current of the Cu/SiCOH/Si structure, a decrease in surface roughness, and a deterioration of the hydrophobic property. The changes in the film's characteristics were related to the formation of Si-F bond, the increase in Si-OH bond, and the C:F deposition at the surface of the SiCOH film.展开更多
With the progress of ULSI technology, materials with low dielectric constant are required to replace SiO2 film as the interlayer to scale down the interconnection delay. Fluorinated Si oxide thin films (SiOF) are a pr...With the progress of ULSI technology, materials with low dielectric constant are required to replace SiO2 film as the interlayer to scale down the interconnection delay. Fluorinated Si oxide thin films (SiOF) are a promising material for the low dielectric constant and the process compatibility in existing technology. However, SiOF films are liable to absorb moisture when exposed to air. By treating the SiOF films with O-2 plasma, it was found that the moisture resistibility of SiOF films was remarkably improved. The mechanism of the improvement in stability of dielectric constant was investigated. The results show that: 1) F atoms dissociated from the films and the bond angle of Si-O-Si decreased. 2) The plasma treatment enhanced the strength of Si-F bonds by removing unstable =SiF2 structures in the films. Resistibility of SiOF films in moisture was improved.展开更多
The laser-generated surface acoustic wave(SAW) technique is an accurate,fast and nondestructive solution to determine the mechanical properties of ultra thin films.SAWs are dispersive during the wave propagation on ...The laser-generated surface acoustic wave(SAW) technique is an accurate,fast and nondestructive solution to determine the mechanical properties of ultra thin films.SAWs are dispersive during the wave propagation on the layered structure.The Young's moduli of thin films can be obtained by matching the experimentally and theoretically calculated dispersive SAW curves.A short ultraviolet laser pulse is employed to generate the broad spectral range of the dispersive SAWs.The frequency range of dispersive SAWs in this study reaches 180 MHz,which is adequate for the SAW technique applied for the investigated samples.In this work,the Young's moduli of a series of nanoporous Black Diamond^(TM) low dielectric constant(low-k) films deposited on a Si(100) substrate are characterized successfully by the SAW technique.展开更多
The existence of water phase occupies oil flow area and impacts the confined oil flow behavior at the solid substrate in inorganic nanopores of shale oil reservoirs,resulting in a completely different flow pattern whe...The existence of water phase occupies oil flow area and impacts the confined oil flow behavior at the solid substrate in inorganic nanopores of shale oil reservoirs,resulting in a completely different flow pattern when compared with the single oil phase flow.This study proposes an analytical model to describe the water-oil two-phase flow.In this model,water slippage at the solid substrate is considered while oil slip is introduced to calculate the oil movement at the solid-oil boundary in dry conditions.It is proven that the oil flow profiles of both the two-phase model and single-phase model show parabolic shapes,but the oil flow capacity drops when water takes up the flow space and the impact of water is more significant when the pore dimension is smaller than 30 nm.Also,the oil flow velocity at a pore center is found to drop linearly given a larger water saturation in wet conditions.The effects of surface wettability and oil properties on water-oil flow are also discussed.Compared with the existing singlephase models,this model describes oil flow pattern in the wet condition with the incorporation of the influence of nanopore properties,which better predicts the oil transport in actual reservoir conditions.Water-oil relative permeability curves are also obtained to improve oil yield.展开更多
Effect of C:F deposition on SiCOH etching in a CHF3 dual-frequency capacitively couple plasma, driven by a high-frequency source of 60 MHz (HF) and a low-frequency source of 2 MHz (LF) simultaneously, is investig...Effect of C:F deposition on SiCOH etching in a CHF3 dual-frequency capacitively couple plasma, driven by a high-frequency source of 60 MHz (HF) and a low-frequency source of 2 MHz (LF) simultaneously, is investigated. With the increase in LF power, the change of C:F layer from dense C:F layer to porous C:F layer and further to C:F filling gaps was observed, which led to the transition from films deposition to films etching. The change of C:F layer is related to the bombardment by energetic ions and CF2 concentration in the plasma. As the LF power increased to 35 - 40 W, the energetic ions and the low CF2 concentration led to a suppression of C:F deposition. Therefore, the SiCOH films can be etched at higher LF power.展开更多
Nanoporous amorphous ZnO films with lamellar structure were electrodetposited on the hydrophilir substrate by utilizing cooperative surface aussembly of anionic sodium dodecyl sulfonate ( SDS ) at a very low concen...Nanoporous amorphous ZnO films with lamellar structure were electrodetposited on the hydrophilir substrate by utilizing cooperative surface aussembly of anionic sodium dodecyl sulfonate ( SDS ) at a very low concentration and inorganic species Zn ( NO3 )2 under the influence of an electrostatic potential. The deposited films were characterized by X-ray diffraction (XRD) in the range of lou, angle and wide-angle, X-ray photoelectron spectroscopy ( XPS), scanning electron microscopy (SEM), and UV-Vis light absorption spectroscopy.The formation mechanism of the films was elementarily discussed.展开更多
Depth profiled positronium (Ps) annihilation lifetime spectroscopy (PALS) is an extremely useful probe of the pore characteristics in nanoporous low-dielectric (low-k) constant thin films. PALS has also been con...Depth profiled positronium (Ps) annihilation lifetime spectroscopy (PALS) is an extremely useful probe of the pore characteristics in nanoporous low-dielectric (low-k) constant thin films. PALS has also been considered as a potential probe to investigate diffusion barrier integrity and the structural changes of porous low-k films during their integration with Cu. Hence, it is essential to understand the diffusion behaviour of positronium/Cu atoms in the films. In this work, based on the fact that porous materials possess characteristics of statistical self-similarity, a fractal model, the Menger sponge model, has been applied to simulate the structure of a promising dielectric, porous methylsilsesquioxane (MSQ) films. The diffusion behaviour of Ps out of the fractal model and into the surrounding vacuum is studied by means of the diffusion equation and traditional adveetive diffusive theory. Predictive results from our model show good agreement with measurement data.展开更多
The sensing sensitivity of the wavelength interrogated surface plasmon resonance(WISPR) biosensor could be improved by self-assembly of nanoporous thin-film of TiO2 nanoparticles/DNA(TiO2/DNA)n(n is the number of...The sensing sensitivity of the wavelength interrogated surface plasmon resonance(WISPR) biosensor could be improved by self-assembly of nanoporous thin-film of TiO2 nanoparticles/DNA(TiO2/DNA)n(n is the number of bilayer) on wavelength interrogated surface plasmon resonance(WISPR) chips.The growth behavior and surface structure of the nanoporous thin-film were investigated by UV-Vis spectroscopy and scanning electron microscopy,respectively.The home-made WISPR sensor with Krestchmann configuration consisted of a tungsten-halogen lamp as a photon source and a CCD camera as the detector.After the deposition of (DNA/TiO2)n thin film on WISPR chips,the resonance peak of the reflection spectra appeared in air.With the increases of n,the resonance wavelength gradually red shifted,which is consistent with the simulated results.After the optimization of the porous film,the WISPR biosensor was utilized to detect low-molecular-weight analytes,such as biotin.The result demonstrates that the sensitivity of [poly(styrene sulfonate)/polyally lamine hydrochlorides]5(PSS/PAH)5 could be 4 times higher than that of polyelectrolyte multilayer modified WISPR sensor.展开更多
A simple and rapid approach for the electrochemical synthesis of Ag nanoparticles-coated gold nanoporous film (AgGNF) on a gold substrate was reported. The solid gold electrode (SGE) was directly anodized under a high...A simple and rapid approach for the electrochemical synthesis of Ag nanoparticles-coated gold nanoporous film (AgGNF) on a gold substrate was reported. The solid gold electrode (SGE) was directly anodized under a high potential of 5 V, and then reduced to obtain gold nanoporous film (AuNF) by freshly prepared ascorbic acid. The Ag nanoparticles (AgNPs) were grown on the AuNF electrode by potential-step electrodeposition. The resulting AgGNF composites electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and cyclic voltammetry (CV). As-prepared AgGNF electrode was used as a kind of superior sensor for Cr(VI) detection, which exhibited better electrocatalytic behavior than those of AuNF and SGE under identical conditions. Such a designed AgGNF nanocomposites electrode showed outstanding sensitivity (about 0.15 nA/ppb) and favorable reproducibility for Cr(VI) detection. The dependence of reduction current on Cr(VI) concentration is linear from 2 to 370 ppb with a low detection limit of 0.65 ppb. Interferences from other heavy metals ions (Cr3+, Cu2+, Pb2+, As3+ and Hg2+) associated with Cr(VI) analysis could be effectively diminished. The present method proves to be rapid, reliable, sensitive and low-cost.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.52106099)the Natural Science Foundation of Shandong Province (Grant No.ZR2022YQ57)the Taishan Scholars Program。
文摘Photon tunneling effects give rise to surface waves,amplifying radiative heat transfer in the near-field regime.Recent research has highlighted that the introduction of nanopores into materials creates additional pathways for heat transfer,leading to a substantial enhancement of near-field radiative heat transfer(NFRHT).Being a direct bandgap semiconductor,GaN has high thermal conductivity and stable resistance at high temperatures,and holds significant potential for applications in optoelectronic devices.Indeed,study of NFRHT between nanoporous GaN films is currently lacking,hence the physical mechanism for adding nanopores to GaN films remains to be discussed in the field of NFRHT.In this work,we delve into the NFRHT of GaN nanoporous films in terms of gap distance,GaN film thickness and the vacuum filling ratio.The results demonstrate a 27.2%increase in heat flux for a 10 nm gap when the nanoporous filling ratio is 0.5.Moreover,the spectral heat flux exhibits redshift with increase in the vacuum filling ratio.To be more precise,the peak of spectral heat flux moves fromω=1.31×10^(14)rad·s^(-1)toω=1.23×10^(14)rad·s^(-1)when the vacuum filling ratio changes from f=0.1 to f=0.5;this can be attributed to the excitation of surface phonon polaritons.The introduction of graphene into these configurations can highly enhance the NFRHT,and the spectral heat flux exhibits a blueshift with increase in the vacuum filling ratio,which can be explained by the excitation of surface plasmon polaritons.These findings offer theoretical insights that can guide the extensive utilization of porous structures in thermal control,management and thermal modulation.
基金the Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC033)Beijing Natural Science Foundation(2204093)for providing research funding.
文摘Gas flow properties in nanopores are significantly determined by the flow patterns. Slug flow pattern is a potential water–gas two phase flow pattern, in which gas molecules flow in form of gas slugs and water molecules separate gas slugs. Considering water slippage, a portion of water molecules accumulates at the wall with lower mobility, while the remaining water molecules take the shape of a water bridge. Adopting foam apparent viscosity model to represent slug rheological behavior, how water bridge disturbs on gas flow capacity is estimated. The results are compared with the water–gas two phase flow model that assumes annular flow pattern as well as the single gas flow model without the consideration of water. The comparison illustrates that gas molecular movement is significantly hindered by flow space reduction and loss of gas slippage. The impact from water phase of slug flow pattern is more significant than that of annular flow pattern on gas flow capacity. It is discovered that larger nanopores improve gas flow capacity while maintaining bulk water layer thickness and increasing water bridge thickness tend to reduce gas transport ability. A better understanding of the structure and transport of water and gas molecules is conducive to figure out the specific gas–water flow behavior and predict shale gas production.
基金the National Natural Science Foundation of China(Grant No.20133040)the Chinese National Foundation of High Technology(2002AA842052)+1 种基金the Shanghai Nanotechnology Promotion Center(0352nm022,0352nm056)the Shanghai International Cooperation Program and Trans-Century Training Programme Foundation for the Talents by the State Education Commission.
文摘Nanoporous silica films were prepared by sol-gel process with base, acid and base/acid two-step catalysis.Transmission electron microscope (TEM) and particle size analyzer were used to characterize the microstructure and the particle size distribution of the sols. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and spectroscopic ellipsometer were used to characterize the surface microstructure and the optical properties of the silica films. Stability of the sols during long-term storage was investigated. Moreover,the dispersion relation of the optical constants of the silica films, and the control of the microstructure and properties of the films by changing the catalysis conditions during sol-gel process were also discussed.
基金This work was supported by the National Natural Science Foundation of China(No.60171008)Shanghai Science and Technology Committee(No.0214nm005,No.0452nm087).
文摘A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy films through vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SELLS). R was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.
基金the supports of this study by the Iran National Science Foundation (No. 98001285)Pays de Montbéliard Agglomération (France) for the support of this work。
文摘Nanoporous BiVO;thin films were deposited using reactive magnetron sputtering in Ar and O;atmosphere, on various substrates, employing pulsed direct-current(DC) power supplies applied to metallic Bi and V targets for rapid deposition. The procedure was followed by a post-annealing treatment in air to crystallize the photoactive monoclinic scheelite structure. The influence of total pressure and substrate on the crystal structure, morphology, microstructure, optical and photocatalytic properties of the films was investigated. The crystallization of monoclinic scheelite structure deposited on fused silica substrate starts at 250 ℃ and the films are stable up to 600 ℃. The morphology of the films is rather dense, despite at the high sputtering pressure(>2 Pa), with embedded nanopores. Among the thin films deposited on fused silica, the one deposited at 4.5 Pa exhibits the highest porosity(52%), with the lowest bandgap(2.44 eV) and it shows the highest photocatalytic activity in the degradation of Rhodamine-B(26% after 7 h) under visible light irradiation. The film deposited on the silicon substrate exhibits the highest photoactivity(53% after 7 h). Lack of hypsochromic shift in the UV-Vis temporal absorption spectra shows the dominance of the chromophore cleavage pathway in the photodecomposition.
基金Projects(21171027,50872014) supported by the National Natural Science Foundation of ChinaProject(K1001020-11)supported by the Science and Technology Key Project of Changsha City,China
文摘The crystalline structure and surface morphology of TiO2 semiconductor coating play an important role in the conversion efficiency of dye-sensitized solar cells. In order to obtain TiO2 coating with controllable morphology and high porosity, nanoporous TiO2 films were fabricated on conducting glass (FTO) substrates, Ti thin films (1.5-2 gin) were deposited on conducting glass (FTO) substrates via the DC sputtering method, and then electrochemically anodized in NH4F/ethylene glycol solution. The crystalline structure and surface morphology of the samples were characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM), respectively. The influences of anodizing potential, electrolyte composition, and pH value on the surface morphology of nanoporous TiO2 films were extensively studied. The growth mechanism of nanoporous TiO2 films was discussed by current density variations with anodizing time. The results demonstrate that nanoporous TiO2 films with high porosity and three-dimensional (3D) networks are observed at 30 V, when the NH4F concentration in ethylene glycol solution is 0.3% (mass fraction) and the electrolyte pH value is 5.0.
基金supported by the Research Funds of Guangxi Key Laboratory of Information Materials, China (No.0710908-04-K)Guangxi Natural Science Fund, China (No.0832257)the Research Funds of Education Bureau of Guangxi Province, China (No.200708LX333)
文摘Barium strontium titanate (Ba0.5Sr0.5TiO3, BST)/silicon nanoporous pillar array (Si-NPA) thin films were prepared by a spin-coating/annealing technique based on Si-NPA with micro/nano-structure. Both the isomer conversion of acetylacetone and the network structure combined by enol and Ti-alkoxide facilitate the formation of the BST sol and the subsequent crystallization. Before the perovskite BST begins to form, the intermediate phase (Ba, Sr)Ti2OsCO3 is found. The boundary between BST and Si-NPA is of clarity and little interface diffusion, disclosing that Si-NPA is an ideal template substrate in the preparation of multifunctional composite films.
文摘Silicon containing materials have traditionally been used in microelectronic fabrication. Semiconductor devices often have one or more arrays of patterned interconnect levels that serve to electrically couple the individual circuit elements forming an integrated circuit. These interconnect levels are typically separated by an insulating or dielectric film. Previously, a silicon oxide film was the most commonly used material for such dielectric films having dielectric constants( k ) near 4 0. However, as the feature size is continuously scaling down, the relatively high k of such silicon oxide films became inadequate to provide efficient electrical insulation. As such, there has been an increasing market demand for materials with even lower dielectric constant for Interlayer Dielectric(ILD) applications, yet retaining thermal and mechanical integrity. We wish to report here our investigations on the preparation of ultra low k ILD materials using a sacrificial approach whereby organic groups are burnt out to generate low k porous ORMOSIL films. We have been able to prepare a variety of organically modified silicone resins leading to highly microporous thin films, exhibiting ultra low k from 1 80 to 2 87, and good to high modulus, 1 5 to 5 5 GPa. Structure property influences on porosity, dielectric constant and modulus will be discussed.
文摘Colloidal silica sol is formed by a novel hydrolyzing procedure of tetraethyl orthosilicate(TEOS) catalyzing with NH 3 ·H 2 O in aqueous mediums. Glycerol, combining with the hydrolyzed intermediates of TEOS, controls growing of the silica particles; poly(vinyl vinyl alcohol makes the colloidal silica sol with polymeric structure and spinning, thermal strain makes the gel silica film changed into a nanoporous structure with diameter ranging 50-150 nm. Morphologies of the nanoporous silica film have been characterized; the porosities (%) is 32-64; the average dielectric constant at 1MHz region is 2.0 and 2.1; the thermal conductivity is less than 0.8. Chemical mechanism of the sol gel process is discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.60876072)the Tianjin Research Program of Application Foundation and Advanced Technology,China(Grant No.10JCZDJC15500)
文摘The surface acoustic wave (SAW) technique is a precise and nondestructive method to detect the mechanical charac- teristics of the thin low dielectric constant (low-k) film by matching the theoretical dispersion curve with the experimental dispersion curve. In this paper, the influence of sample roughness on the precision of SAW mechanical detection is inves- tigated in detail. Random roughness values at the surface of low-k film and at the interface between this low-k film and the substrate are obtained by the Monte Carlo method. The dispersive characteristic of SAW on the layered structure with rough surface and rough interface is modeled by numerical simulation of finite element method. The Young's moduli of the Black DiamondTM samples with different roughness values are determined by SAWs in the experiment. The results show that the influence of sample roughness is very small when the root-mean-square (RMS) of roughness is smaller than 50 nm and correlation length is smaller than 20 μm. This study indicates that the SAW technique is reliable and precise in the nondestructive mechanical detection for low-k films.
基金supported by National Natural Science Foundation of China(Nos.10975105,11075114)
文摘This work investigated C2F6/O2/Ar plasma chemistry and its effect on the etching characteristics of SiCOH low-k dielectrics in 60 MHz/2 MHz dual-frequency capacitively coupled discharge. For the C2F6/Ar plasma, the increase in the low-frequency (LF) power led to an increased ion impact, prompting the dissociation of C2F6 with higher reaction energy. As a result, fluorocarbon radicals with a high F/C ratio decreased. The increase in the discharge pressure led to a decrease in the electron temperature, resulting in the decrease of C2F6 dissociation. For the C2F6/O2/Ar plasma, the increase in the LF power prompted the reaction between 02 and C2F6, resulting in the elimination of CF3 and CF2 radicals, and the production of an F-rich plasma environment. The F-rich plasma improved the etching characteristics of SiCOH low-k films, leading to a high etching rate and a smooth etched surface.
基金supported by National Natural Science Foundation of China(Nos.10575074,10635010)
文摘The characteristics of SiCOH low dielectric constant film treated by a trifluromethane (CHF3) electron cyclotron resonance (ECR) plasma was investigated. The flat-band voltage VFB and leakage current of the Cu/SiCOH/Si structure, and the hydrophobic property of the SiCOH film were obtained by the measurements of capacitance-voltage, current-voltage and water contact angle. The structures of the SiCOH film were also analyzed by Fourier transform infrared spectroscopy and atomic force microscopy. The CHF3 plasma treatment of the SiCOH film led to a reduction in both the fiat-band voltage VFB shift and leakage current of the Cu/SiCOH/Si structure, a decrease in surface roughness, and a deterioration of the hydrophobic property. The changes in the film's characteristics were related to the formation of Si-F bond, the increase in Si-OH bond, and the C:F deposition at the surface of the SiCOH film.
基金The work was supported by the National Natural Science Foundation of China(No.69776026)the Foundation for University Key Teacher by the Ministry of Education.
文摘With the progress of ULSI technology, materials with low dielectric constant are required to replace SiO2 film as the interlayer to scale down the interconnection delay. Fluorinated Si oxide thin films (SiOF) are a promising material for the low dielectric constant and the process compatibility in existing technology. However, SiOF films are liable to absorb moisture when exposed to air. By treating the SiOF films with O-2 plasma, it was found that the moisture resistibility of SiOF films was remarkably improved. The mechanism of the improvement in stability of dielectric constant was investigated. The results show that: 1) F atoms dissociated from the films and the bond angle of Si-O-Si decreased. 2) The plasma treatment enhanced the strength of Si-F bonds by removing unstable =SiF2 structures in the films. Resistibility of SiOF films in moisture was improved.
基金Project supported by the National Natural Science Fotmdation of China(No.60876072)the New Century Excellent Talents in University,China(No.NCET-08-0389).
文摘The laser-generated surface acoustic wave(SAW) technique is an accurate,fast and nondestructive solution to determine the mechanical properties of ultra thin films.SAWs are dispersive during the wave propagation on the layered structure.The Young's moduli of thin films can be obtained by matching the experimentally and theoretically calculated dispersive SAW curves.A short ultraviolet laser pulse is employed to generate the broad spectral range of the dispersive SAWs.The frequency range of dispersive SAWs in this study reaches 180 MHz,which is adequate for the SAW technique applied for the investigated samples.In this work,the Young's moduli of a series of nanoporous Black Diamond^(TM) low dielectric constant(low-k) films deposited on a Si(100) substrate are characterized successfully by the SAW technique.
基金the NSERC/Energi Simulation and Alberta Innovates Chairs for providing research fundingthe Beijing Natural Science Foundation(2204093)Science Foundation of China University of Petroleum,Beijing(No.2462018YJRC033)for providing research funding。
文摘The existence of water phase occupies oil flow area and impacts the confined oil flow behavior at the solid substrate in inorganic nanopores of shale oil reservoirs,resulting in a completely different flow pattern when compared with the single oil phase flow.This study proposes an analytical model to describe the water-oil two-phase flow.In this model,water slippage at the solid substrate is considered while oil slip is introduced to calculate the oil movement at the solid-oil boundary in dry conditions.It is proven that the oil flow profiles of both the two-phase model and single-phase model show parabolic shapes,but the oil flow capacity drops when water takes up the flow space and the impact of water is more significant when the pore dimension is smaller than 30 nm.Also,the oil flow velocity at a pore center is found to drop linearly given a larger water saturation in wet conditions.The effects of surface wettability and oil properties on water-oil flow are also discussed.Compared with the existing singlephase models,this model describes oil flow pattern in the wet condition with the incorporation of the influence of nanopore properties,which better predicts the oil transport in actual reservoir conditions.Water-oil relative permeability curves are also obtained to improve oil yield.
基金supported by National Natural Science Foundation of China (Nos.10575074, 10635010)
文摘Effect of C:F deposition on SiCOH etching in a CHF3 dual-frequency capacitively couple plasma, driven by a high-frequency source of 60 MHz (HF) and a low-frequency source of 2 MHz (LF) simultaneously, is investigated. With the increase in LF power, the change of C:F layer from dense C:F layer to porous C:F layer and further to C:F filling gaps was observed, which led to the transition from films deposition to films etching. The change of C:F layer is related to the bombardment by energetic ions and CF2 concentration in the plasma. As the LF power increased to 35 - 40 W, the energetic ions and the low CF2 concentration led to a suppression of C:F deposition. Therefore, the SiCOH films can be etched at higher LF power.
基金Founded by National Science Foundation of Tianjin ( No.33802311)
文摘Nanoporous amorphous ZnO films with lamellar structure were electrodetposited on the hydrophilir substrate by utilizing cooperative surface aussembly of anionic sodium dodecyl sulfonate ( SDS ) at a very low concentration and inorganic species Zn ( NO3 )2 under the influence of an electrostatic potential. The deposited films were characterized by X-ray diffraction (XRD) in the range of lou, angle and wide-angle, X-ray photoelectron spectroscopy ( XPS), scanning electron microscopy (SEM), and UV-Vis light absorption spectroscopy.The formation mechanism of the films was elementarily discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60476011)
文摘Depth profiled positronium (Ps) annihilation lifetime spectroscopy (PALS) is an extremely useful probe of the pore characteristics in nanoporous low-dielectric (low-k) constant thin films. PALS has also been considered as a potential probe to investigate diffusion barrier integrity and the structural changes of porous low-k films during their integration with Cu. Hence, it is essential to understand the diffusion behaviour of positronium/Cu atoms in the films. In this work, based on the fact that porous materials possess characteristics of statistical self-similarity, a fractal model, the Menger sponge model, has been applied to simulate the structure of a promising dielectric, porous methylsilsesquioxane (MSQ) films. The diffusion behaviour of Ps out of the fractal model and into the surrounding vacuum is studied by means of the diffusion equation and traditional adveetive diffusive theory. Predictive results from our model show good agreement with measurement data.
基金Supported by the National Natural Science Foundation of China(Nos.91123029, 61077066, 61340032), the National High Technology Research and Development Program of China(No.2012AA063302) and the Natural Science Foundation of Shandong Province, China(No.ZR2012CM029).
文摘The sensing sensitivity of the wavelength interrogated surface plasmon resonance(WISPR) biosensor could be improved by self-assembly of nanoporous thin-film of TiO2 nanoparticles/DNA(TiO2/DNA)n(n is the number of bilayer) on wavelength interrogated surface plasmon resonance(WISPR) chips.The growth behavior and surface structure of the nanoporous thin-film were investigated by UV-Vis spectroscopy and scanning electron microscopy,respectively.The home-made WISPR sensor with Krestchmann configuration consisted of a tungsten-halogen lamp as a photon source and a CCD camera as the detector.After the deposition of (DNA/TiO2)n thin film on WISPR chips,the resonance peak of the reflection spectra appeared in air.With the increases of n,the resonance wavelength gradually red shifted,which is consistent with the simulated results.After the optimization of the porous film,the WISPR biosensor was utilized to detect low-molecular-weight analytes,such as biotin.The result demonstrates that the sensitivity of [poly(styrene sulfonate)/polyally lamine hydrochlorides]5(PSS/PAH)5 could be 4 times higher than that of polyelectrolyte multilayer modified WISPR sensor.
基金supported by the National Natural Science Foundation of China (21005014)the Foundation of Donghua University (113-10-0044029)
文摘A simple and rapid approach for the electrochemical synthesis of Ag nanoparticles-coated gold nanoporous film (AgGNF) on a gold substrate was reported. The solid gold electrode (SGE) was directly anodized under a high potential of 5 V, and then reduced to obtain gold nanoporous film (AuNF) by freshly prepared ascorbic acid. The Ag nanoparticles (AgNPs) were grown on the AuNF electrode by potential-step electrodeposition. The resulting AgGNF composites electrodes were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) spectroscopy and cyclic voltammetry (CV). As-prepared AgGNF electrode was used as a kind of superior sensor for Cr(VI) detection, which exhibited better electrocatalytic behavior than those of AuNF and SGE under identical conditions. Such a designed AgGNF nanocomposites electrode showed outstanding sensitivity (about 0.15 nA/ppb) and favorable reproducibility for Cr(VI) detection. The dependence of reduction current on Cr(VI) concentration is linear from 2 to 370 ppb with a low detection limit of 0.65 ppb. Interferences from other heavy metals ions (Cr3+, Cu2+, Pb2+, As3+ and Hg2+) associated with Cr(VI) analysis could be effectively diminished. The present method proves to be rapid, reliable, sensitive and low-cost.