Currently,the energy crisis is the crucial problem faced by the world,and photocatalytic hydrogen(H_(2))production is recognized with a chance to be a standout amongst those guaranteeing results to this issue.For a lo...Currently,the energy crisis is the crucial problem faced by the world,and photocatalytic hydrogen(H_(2))production is recognized with a chance to be a standout amongst those guaranteeing results to this issue.For a long time,photocatalytic H_(2) production has mainly relied on the noble metal cata‐lysts.However,the limitations of noble metals themselves,such as scarcity and high cost,have se‐verely restricted their large‐scale application.Therefore,it is urgent to seek a cheaper,more effi‐cient,and stable catalyst for photocatalytic H_(2) production.Fortunately,the emergence of carbon nanostructured materials(CNMs)has brought dawn.Its excellent structure and semiconductor performance can effectively participate in photocatalytic H_(2) production.CNMs have developed rap‐idly since they appeared in the field of photocatalytic water splitting.Therefore,it is necessary to summarize the latest progress of CNMs promptly for further development.This review introduced the CNMs,including carbon dots,fullerenes,carbon nanotubes,graphene,and graphdiyne,which is a powerful assistant in photocatalytic H_(2) production.CNMs can provide abundant adsorption and active sites,charge separation and transport channels,photocatalysts,co‐catalysts and photosensi‐tizers.Then,this review has introduced the strategy for enhancing CNMs in photocatalytic H_(2) pro‐duction based on recent research.Finally,the challenge faced by CNMs in photocatalytic H_(2) produc‐tion has prospected.展开更多
Natural rubber based composites containing different carbon nanofillers (fullerenes, carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs)) at different concentrations have been prepared. Their dielectric properti...Natural rubber based composites containing different carbon nanofillers (fullerenes, carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs)) at different concentrations have been prepared. Their dielectric properties (dielectric permittivity, dielectric loss) have been studied in the 1 - 12 GHz frequency range. Some factors (electromagnetic field frequency, fillers concentration, fillers intrinsic structure) influencing the dielectric behavior of the composites have been investigated. The dielectric properties of the developed natural rubber composites containing conductive fillers (fullerenes, CNTs, GNPs) indicate that these composites can be used as broadband microwave absorbing materials.展开更多
文摘Currently,the energy crisis is the crucial problem faced by the world,and photocatalytic hydrogen(H_(2))production is recognized with a chance to be a standout amongst those guaranteeing results to this issue.For a long time,photocatalytic H_(2) production has mainly relied on the noble metal cata‐lysts.However,the limitations of noble metals themselves,such as scarcity and high cost,have se‐verely restricted their large‐scale application.Therefore,it is urgent to seek a cheaper,more effi‐cient,and stable catalyst for photocatalytic H_(2) production.Fortunately,the emergence of carbon nanostructured materials(CNMs)has brought dawn.Its excellent structure and semiconductor performance can effectively participate in photocatalytic H_(2) production.CNMs have developed rap‐idly since they appeared in the field of photocatalytic water splitting.Therefore,it is necessary to summarize the latest progress of CNMs promptly for further development.This review introduced the CNMs,including carbon dots,fullerenes,carbon nanotubes,graphene,and graphdiyne,which is a powerful assistant in photocatalytic H_(2) production.CNMs can provide abundant adsorption and active sites,charge separation and transport channels,photocatalysts,co‐catalysts and photosensi‐tizers.Then,this review has introduced the strategy for enhancing CNMs in photocatalytic H_(2) pro‐duction based on recent research.Finally,the challenge faced by CNMs in photocatalytic H_(2) produc‐tion has prospected.
文摘Natural rubber based composites containing different carbon nanofillers (fullerenes, carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs)) at different concentrations have been prepared. Their dielectric properties (dielectric permittivity, dielectric loss) have been studied in the 1 - 12 GHz frequency range. Some factors (electromagnetic field frequency, fillers concentration, fillers intrinsic structure) influencing the dielectric behavior of the composites have been investigated. The dielectric properties of the developed natural rubber composites containing conductive fillers (fullerenes, CNTs, GNPs) indicate that these composites can be used as broadband microwave absorbing materials.