To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furf...To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furfural.Among the different properties of rubber processing oils,density and refractive index are some of the most important properties related to their final quality.Two types of methods,including a pseudo-component approach by using mixing rules and several correlations,were used for calculation of density and refractive index at 20℃ of paraffinic furfural-extract oils and their secondary raffinates.Results indicated that similar accuracy was obtained for predicting the density and the refractive index of furfural+furfural-extract paraffinic oil systems.However,the quadratic correlation presents its advantage over the pseudo-component approach when the composition of oils is not available.Moreover,the quadratic correlation was also used for naphthenic lubricating oils during two-stage solvent extraction processes.The predictions showed much larger discrepancies with respect to experimental values than those of paraffinic lubricating oils,which indicated that the quadratic correlation was more suitable for paraffinic oils with a CN value of below 37%.展开更多
Three high-acidity crudes, Dar, SZ36-1, and QHD326, were separated through distillation into several fractions, including diesel distillates, and VGOs. Samples were characterized by negative-ion ESI FT-ICR MS. The O2 ...Three high-acidity crudes, Dar, SZ36-1, and QHD326, were separated through distillation into several fractions, including diesel distillates, and VGOs. Samples were characterized by negative-ion ESI FT-ICR MS. The O2 class species (petroleum carboxylic acids), which have a close relationship with corrosion of equipment caused by high-acidity crudes, were put in the focus of attention and were discussed in this paper. Monocyclic, bicyclic, and tricyclic naphthenic acids are the main types of petroleum carboxylic acids in naphthenic-base crudes (SZ36-1 and QHD326). But the main types of petroleum carboxylic acids in paraffinic-base crude (Dar) are aliphatic acids and monocyclic naphthenic acids. The O2 class species in SZ36-1 and QHD326 are distributed in a wider range and have bigger DBE value (double-bond equivalence value) and carbon number than Dar. Bicyclic naphthenic acids have the highest proportion among petroleum carboxylie acids in diesel distillates, but monocyclic and tricyclic naphthenic acids also occupy a high proportion. Particularly, aliphatic acids in the diesel distillate of Dar still have high proportion among petroleum carboxylic acids. The distribution of petroleum carboxylic acids in VGO is basically identical. The bicyclic naphthenic acids assume the first place (about 25 m%), while the monocyclic and tricyclic naphthenic acids take the next place. The comparison of petroleum carboxylic acids in diesel distillates and VGOs has revealed that the molecules of carboxylic acids in VGOs are not only bigger but also more complicated.展开更多
Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthe...Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthenic base oil was investigated by studying the low-temperature viscosity of tested oils. The viscosity of lube oils increased with an increasing content of high-viscosity paraffinic base oil in the oil mixture. And the low-temperature viscosity was less influenced when the content of paraffinic base oil in the mixture was insignificant. In order to reduce the cost for formulating lubricating oil, a small fraction of paraffinic base oil can be added into naphthenic base oil as far as the property of lubricating oil can meet the specification. According to the study on low-temperature viscosity of the oil mixed with paraffinic base oil and naphthenic base oil, a basic rule was worked out for the preparation of qualified lubricating oils.展开更多
Most heavy crude oils underwent biodegradation and generated a significant amount of naphthenic acids. Naphthenic acids are polar compounds with the carboxylic group and are considered as a major factor affecting the ...Most heavy crude oils underwent biodegradation and generated a significant amount of naphthenic acids. Naphthenic acids are polar compounds with the carboxylic group and are considered as a major factor affecting the oil viscosity. However, the relationship between the molecular composition of naphthenic acids and oil viscosity is not well understood. This study examined a “clean” heavy oil with low contents of heteroatoms but had a high content of naphthenic acids. Naphthenic acids were fractionated by distillation and caustic extraction. The molecular composition was characterized by high-resolution Orbitrap mass spectrometry. It was found that the 2- and 3-ring naphthenic monoacids with 15–35 carbon atoms are dominant components of the acid fractions;the caustic extraction is capable of isolating naphthenic acids with less than 35 carbons, which is equivalent to the upper limit of the distillable components, but not those in the residue fraction;the total acid number of the heavy distillates is higher than that of the residue fraction;the viscosity of the distillation fraction increases exponentially with an increased boiling point of the distillates. Blending experiments indicates that there is a strong correlation between the oil viscosity and acids content, although the acid content is only a few percent of the total oil.展开更多
Oil-soluble stannous naphthenate (SN) is synthesized by using naphthenatic acid and SnO. And its molecular structure is confirmed by IR and multielement oil analyzer (MOA). The tribological performances of the organot...Oil-soluble stannous naphthenate (SN) is synthesized by using naphthenatic acid and SnO. And its molecular structure is confirmed by IR and multielement oil analyzer (MOA). The tribological performances of the organotin as lubricant additive are evaluated with a four-ball friction and wear tester. These experiments indicate that the wear scar diameter (WSD) and friction coefficient are diminished while the load-carrying capability increased by comparison with that of base oil. The elemental composition of the boundary lubricating film is examined by means of Auger electron spectroscopy (AES). Synergistic effect is found in the load-carrying capability of the complex of SN and sulfured olefin. The analytical results of AES indicate that the good performance of stannous naphthenate is attributed to the formation of a boundary lubricating film containing Sn on the rubbed surface.展开更多
In present research, a novel extractant system (D2EHPA + naphthenic acid + pyridine- ester) was used to purify cobalt anolyte and a simulated industrial production were carried out. This novel extraction system can ex...In present research, a novel extractant system (D2EHPA + naphthenic acid + pyridine- ester) was used to purify cobalt anolyte and a simulated industrial production were carried out. This novel extraction system can extract Cu and/or Ni against Co from chloride medium solutions at pH range of 2.5-4.5. About 2g/l nickel and 0.2g/l copper were removed from the cobalt chloride anolyte containing about 100g/l cobalt and 200g/l chloride ions respectively, the raffinate contains nickel and copper less than 0.03g/l and 0.0003g/l respectively and can be used to electrolyze high-purity cobalt. About 5.5t cobalt anolyte was purified in the simulation industrial experiment and kilogram quantities of cobalt of 99.98% purity and about 95% recovery have been produced.展开更多
The presence of naphthenic acids in oil sand products and process streams is the cause of toxicity to aquatic life and corrosion. The removal of organic acids from tailings pond water reduces the negative impact on ma...The presence of naphthenic acids in oil sand products and process streams is the cause of toxicity to aquatic life and corrosion. The removal of organic acids from tailings pond water reduces the negative impact on marine life. The ultra-violet (UV) photocatalytic reduction of commercial naphthenic acid in water using TiO2-zeolitecomposites showed a significant decrease in the concentration of naphthenic acid, accompanied by an increase in carbon dioxide formation;the presence of carbon dioxide signifies degradation of the naphthenic acids. Mixtures of the acid and photocatalyst kept in the dark did not show any concentration changes. The extent of naphthenic acid reduction by UV light was verified by the reduction in total acidity. The total acidity values of mixtures of the acid and TiO2-zeoliteexposed to UV decreased by 31% compared to mixtures kept in the dark. A reduction in total acidity may lead to a decrease in the toxicity of naphthenic acid contaminated water.展开更多
The thermal stability of oil gels formed by styrene-butadiene-styrene triblock copolymer (SBS) was improved by adding a small amount of poly(phenylene ether) (PPE), which has a higher glass transition temperature (Tg)...The thermal stability of oil gels formed by styrene-butadiene-styrene triblock copolymer (SBS) was improved by adding a small amount of poly(phenylene ether) (PPE), which has a higher glass transition temperature (Tg). In naphthenic oil which is a good solvent for the butadiene blocks, but a non-solvent for the styrene blocks and PPE, PPE was selectively included into styrene blocks in SBS, and induced the increase of the Tg of these blocks. The melting temperature determined by viscoelastic measurements and softening temperature of the gels were elevated by adding PPE, while no significant change was detected by adding polystyrene. The gel became opaque by adding PPE, and partially separated phases were observed by field emission scanning electron microscopy (FE-SEM). The dependence of the viscoelastic behavior on the PPE concentration can be explained by the structural change observed by FE-SEM.展开更多
Naphthenic tire oils were used in winter tire tread compounding. Properties of compounds were compared with similar compounds made of other safe tire oils. Retreaded passenger car winter tires were prepared using the ...Naphthenic tire oils were used in winter tire tread compounding. Properties of compounds were compared with similar compounds made of other safe tire oils. Retreaded passenger car winter tires were prepared using the compounds. Traction and rolling resistance of the tires were determined in different weather conditions.It was shown that naphthenie oils may lead to improvement of winter traction and rolling resistance without compromising other tire properties.展开更多
Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective a...Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective approach to decreasing acidity and the acid removal rate reaches 80%. Temperature is one of the main factors that determine the acid removal reaction. When the temperature ranges from 420oC to 440oC, the acid removal rate increases with the rise of the reaction temperature, but the increase slows down gradually. At the reaction temperature below 440oC, the long reaction time favors the acid removal. The cracking and polymerization of hydrocarbon molecules take place so that the properties of the crude oil change at the same time when the highly acidic crude is thermally treated.展开更多
Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density a...Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.展开更多
The removal of acid compounds (naphthenates) from acidic oil with ionic liquids was systematically investigated. [BMIM]Br-AlCl3 was used to investigate the effect on deacidification of oil. Experimental results show...The removal of acid compounds (naphthenates) from acidic oil with ionic liquids was systematically investigated. [BMIM]Br-AlCl3 was used to investigate the effect on deacidification of oil. Experimental results showed that at a temperature of 323K with a molar ratio of AlCl3 to [BM1M]Br-AlCl3 of 0.2, and a mass ratio of IL to white oil of 4%, the deacidification rate could reach 75.9%. And a reaction time of 4 h was sufficient to achieve the goal. The study on reproducibility of catalytic performance of [BMIM]Br-AlCl3 showed the possibility of using the ionic liquid in the continuous catalytic reaction.展开更多
N-alkyl imidazolium carbonate ionic liquids were employed to separate and recover naphthenic acid from model oils.The effects of the cationic and anionic structures of ionic liquids and operating conditions on the dea...N-alkyl imidazolium carbonate ionic liquids were employed to separate and recover naphthenic acid from model oils.The effects of the cationic and anionic structures of ionic liquids and operating conditions on the deacidification performance were investigated.The deacidification performance of traditional organic solvents was also investigated for comparison.The results indicated that the naphthenic acid could be completely removed from the model oil with a small mass ratio of ionic liquid to oil.The extracted naphthenic acid was regenerated with a recovery of up to 92%.In addition,imidazolium carbonate ionic liquids could be successfully regenerated and recycled.The mechanism of interaction between imidazole ionic liquids and the naphthenic acid molecules were explained by Gauss calculation.展开更多
The catalytic esterification reaction was used to decrease total acid number(TAN) of crude oil by converting naphthenic acids to naphthenic acid esters in the presence of Zn-Al hydrotalcite used as the catalyst and gl...The catalytic esterification reaction was used to decrease total acid number(TAN) of crude oil by converting naphthenic acids to naphthenic acid esters in the presence of Zn-Al hydrotalcite used as the catalyst and glycol used as the reactant. The crude oil and its corresponding esterified oil were characterized by the negative-ion electrospray ionization(ESI) Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS). Six acidic class species, O_2, O_1, N_1, N_2, N_1O_1 and N_1O_2 were assigned in the negative-ion spectrum both in the crude oil and its esterified oil. Among the identified acidic compounds, the O2 class was dominant. The relative abundance of O_2 class species was much higher than other acidic class species in crude oil, while it was significantly decreased after esterification. The most abundant O_2 class species had a carbon number of 30-34 and a double-bond equivalence(DBE) value of 5 before and after esterification. It could be concluded that the naphthenic acids in crude oil can be esterified to lower its TAN value, and each of them seems to exhibit identical esterification efficiency approximately due to the similar DBE versus the-carbon number distribution before and after esterification.展开更多
The Dar crude oil produced in Sudan was distilled into several fractions. The heteroatom class species in crude and its fractions were characterized by the negative-ion ESI FT-ICR MS. The major emphasis was put upon t...The Dar crude oil produced in Sudan was distilled into several fractions. The heteroatom class species in crude and its fractions were characterized by the negative-ion ESI FT-ICR MS. The major emphasis was put upon the study on the O2 class species (petroleum carboxylic acids). The test results revealed that aliphatic acids and monocyclic naphthenic acids accounted for a large proportion in petroleum carboxylic acids of the Dar crude. The relative abundance of aliphatic acids and monocyclic naphthenic acids decreased with an increasing boiling point of fractions. Meanwhile, the relative abundance of bicyclic and tricyclic naphthenic acids increased at first and then decreased, whereas the relative abundance of petroleum carboxylic acids with higher double-bond equivalence (DBE) values increased. The high abundance of aliphatic acids in the Dar crude and its fractions covered the carbon numbers in a range of 16 to 18 which had important geochemical signifi- cance. The O2 class species were distributed in a broad range of DBE values and carbon numbers with increasing boiling points of fractions.展开更多
This work was mainly concentrated on the removal of naphthenic acids(NAs) from dewaxed vacuum gas oil(VGO) by adsorption using a commercial grade activated clay(AC) adsorption during lube base oil refining. The NAs in...This work was mainly concentrated on the removal of naphthenic acids(NAs) from dewaxed vacuum gas oil(VGO) by adsorption using a commercial grade activated clay(AC) adsorption during lube base oil refining. The NAs in dewaxed VGO cut-4 were identified by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry(ESI FT-ICR MS). The AC sample from a refinery was characterized by XRD, BET, TG/DTA, and SEM. A series of experiments were carried out to investigate the performance of NAs adsorption by AC using a batch adsorption technique, in which some key experimental parameters such as temperature, contact time, initial concentration of NA in oil sample as well as the dosage of adsorbent were investigated. Equilibrium isotherms were analyzed using the Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich(D-R) adsorption models. The pseudo-first order, the pseudo-second order, and intraparticle diffusion models were employed to describe the kinetics data. The results revealed that the D-R isotherm provided a better fit to the experimental data than other isotherms, and the adsorption kinetics followed the pseudo-first order kinetic equation. The thermodynamic data indicated that the adsorption process was feasible and spontaneous as an endothermic process. The results could provide a clear understanding of the NAs adsorption by AC during lube base oil processing at refineries.展开更多
High resolution tandem mass spectrometry has been applied to obtain the structure information of petroleumsamples. Here, we report a mefflod for structural characterization of crude oil molecules by the collision-indu...High resolution tandem mass spectrometry has been applied to obtain the structure information of petroleumsamples. Here, we report a mefflod for structural characterization of crude oil molecules by the collision-induced dissocia-tion (CID) technology coupled wiffl the high-field Fourier transform ion cyclotron resonmlce mass spectrometry (FT-ICRMS). The ion isolation window was narrowed down to 1 Da to distinguish file complex homologues contained in petroleum.Aromatic model compounds and crude oil samples were measured by CID FT-ICR MS at different collision energy levels.The fragmentation of model compounds wiffl alkyl side-chains was found to be related to the size of file aromatic rings. Thefragmentation of model compounds wiffl archipelago structures depended on file lengffl of file bridge alkylene chain. Theprevalent reaction pafflway of model compounds with naphthenic rings was mainly determined by the position of naphfflen-ic rings in file molecules. On file basis of file fragmentation pathways, the structure differences of two crude oils were recog-nized as different content of naphthenic rings by CID technology with 1 Da isolation window. The NMR analysis was alsoapplied to confirm file CID results. This study exhibits the great potential of CID FT-ICR MS wiffl narrow isolation windowin file smlctural characterization of crude oil molecules.展开更多
Since the 1990 s, the kerosene fuel(code: JP-8) had been applied in the ground equipment provided with direct injection compression ignition engines in the U.S. Army, resulting in increased occurrence of injection pum...Since the 1990 s, the kerosene fuel(code: JP-8) had been applied in the ground equipment provided with direct injection compression ignition engines in the U.S. Army, resulting in increased occurrence of injection pump failures. Anti-wear additives must be used in the single fuel due to its poor lubricity. In the present work, lubricity improvers were selected on the basis of molecular simulation theoretically and these agents were evaluated to improve the lubricity of jet fuel using the high frequency reciprocating rig(HFRR) apparatus and the ball-on-cylinder lubricity evaluator(BOCLE). It was revealed that dimer acid with higher value of adsorption energy on the Fe(110) plane surface had more efficient lubricity promoting properties than that of naphthenic acid. The experimental results suggested that the dimer acid had a better tribological behavior compared with that of naphthenic acid used as lubricity improver of jet fuel. And addition of anti-wear additives at a dosage of 15 μg/g was able to promote the lubricity of jet fuel to a required level on BOCLE, while a higher concentration over 80 μg/g was needed to improve the lubricity to a demanded value of diesel on HFRR.展开更多
Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in...Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in light of itshigher selectivity, to obtain extracts with a high aromatic content for naphthenic lubricating base oils. We systematicallyinvestigated effects of the solvent-to-oil (S/O) ratio and extraction temperature on the yield of the extract, efficiency ofaromatic removal, and composition of the extracts and raffinates. The results showed that the aromatic content of extractsfor naphthenic oils could reach a high value of about 80%. The solvent maintained a high selectivity for aromatics fornaphthenic oils even under a high S/O ratio and a high extraction temperature. Moreover, the efficiency of aromatic removalfor naphthenic lubricating base oils could be enhanced by increasing either the S/O ratio or the extraction temperature,although these measures had limited effects in practice. Following this, we used the non-random two-liquid (NRTL) modelbased on the pseudo-component approach to simulate the liquid-liquid equilibrium of the system of DMSO + naphtheniclubricating base oils, and determined the parameters of binary interaction through regression based on the data on phaseequilibrium. The modeling results showed that the predicted yield, content of the solvent, and composition of the raffinatesand extracts were in good agreement with those obtained in the experiments. This validates the reliability of the model usedto represent the DMSO + naphthenic lubricating base oil system. Both the experimental data and the method of simulationreported here can help optimize the extraction of naphthenic lubricating base oils, and provide a better understanding of thecorresponding process.展开更多
文摘To meet the requirements for high aromatic content and low polycyclic aromatic(PCA)concentration,eco-friendly aromatic-rich rubber extender oils are usually produced by two-stage solvent extraction processes with furfural.Among the different properties of rubber processing oils,density and refractive index are some of the most important properties related to their final quality.Two types of methods,including a pseudo-component approach by using mixing rules and several correlations,were used for calculation of density and refractive index at 20℃ of paraffinic furfural-extract oils and their secondary raffinates.Results indicated that similar accuracy was obtained for predicting the density and the refractive index of furfural+furfural-extract paraffinic oil systems.However,the quadratic correlation presents its advantage over the pseudo-component approach when the composition of oils is not available.Moreover,the quadratic correlation was also used for naphthenic lubricating oils during two-stage solvent extraction processes.The predictions showed much larger discrepancies with respect to experimental values than those of paraffinic lubricating oils,which indicated that the quadratic correlation was more suitable for paraffinic oils with a CN value of below 37%.
文摘Three high-acidity crudes, Dar, SZ36-1, and QHD326, were separated through distillation into several fractions, including diesel distillates, and VGOs. Samples were characterized by negative-ion ESI FT-ICR MS. The O2 class species (petroleum carboxylic acids), which have a close relationship with corrosion of equipment caused by high-acidity crudes, were put in the focus of attention and were discussed in this paper. Monocyclic, bicyclic, and tricyclic naphthenic acids are the main types of petroleum carboxylic acids in naphthenic-base crudes (SZ36-1 and QHD326). But the main types of petroleum carboxylic acids in paraffinic-base crude (Dar) are aliphatic acids and monocyclic naphthenic acids. The O2 class species in SZ36-1 and QHD326 are distributed in a wider range and have bigger DBE value (double-bond equivalence value) and carbon number than Dar. Bicyclic naphthenic acids have the highest proportion among petroleum carboxylie acids in diesel distillates, but monocyclic and tricyclic naphthenic acids also occupy a high proportion. Particularly, aliphatic acids in the diesel distillate of Dar still have high proportion among petroleum carboxylic acids. The distribution of petroleum carboxylic acids in VGO is basically identical. The bicyclic naphthenic acids assume the first place (about 25 m%), while the monocyclic and tricyclic naphthenic acids take the next place. The comparison of petroleum carboxylic acids in diesel distillates and VGOs has revealed that the molecules of carboxylic acids in VGOs are not only bigger but also more complicated.
文摘Low-temperature viscosity of lube oils mixed with paraffinic base oil and naphthenic base oil at different mass ratios has been tested by experiments. The influence of paraffinic base oil on the performance of naphthenic base oil was investigated by studying the low-temperature viscosity of tested oils. The viscosity of lube oils increased with an increasing content of high-viscosity paraffinic base oil in the oil mixture. And the low-temperature viscosity was less influenced when the content of paraffinic base oil in the mixture was insignificant. In order to reduce the cost for formulating lubricating oil, a small fraction of paraffinic base oil can be added into naphthenic base oil as far as the property of lubricating oil can meet the specification. According to the study on low-temperature viscosity of the oil mixed with paraffinic base oil and naphthenic base oil, a basic rule was worked out for the preparation of qualified lubricating oils.
基金supported by the National Key R&D Program of China(2018YFA0702400)Science Foundation of China University of Petroleum,Beijing(ZX20210029).
文摘Most heavy crude oils underwent biodegradation and generated a significant amount of naphthenic acids. Naphthenic acids are polar compounds with the carboxylic group and are considered as a major factor affecting the oil viscosity. However, the relationship between the molecular composition of naphthenic acids and oil viscosity is not well understood. This study examined a “clean” heavy oil with low contents of heteroatoms but had a high content of naphthenic acids. Naphthenic acids were fractionated by distillation and caustic extraction. The molecular composition was characterized by high-resolution Orbitrap mass spectrometry. It was found that the 2- and 3-ring naphthenic monoacids with 15–35 carbon atoms are dominant components of the acid fractions;the caustic extraction is capable of isolating naphthenic acids with less than 35 carbons, which is equivalent to the upper limit of the distillable components, but not those in the residue fraction;the total acid number of the heavy distillates is higher than that of the residue fraction;the viscosity of the distillation fraction increases exponentially with an increased boiling point of the distillates. Blending experiments indicates that there is a strong correlation between the oil viscosity and acids content, although the acid content is only a few percent of the total oil.
文摘Oil-soluble stannous naphthenate (SN) is synthesized by using naphthenatic acid and SnO. And its molecular structure is confirmed by IR and multielement oil analyzer (MOA). The tribological performances of the organotin as lubricant additive are evaluated with a four-ball friction and wear tester. These experiments indicate that the wear scar diameter (WSD) and friction coefficient are diminished while the load-carrying capability increased by comparison with that of base oil. The elemental composition of the boundary lubricating film is examined by means of Auger electron spectroscopy (AES). Synergistic effect is found in the load-carrying capability of the complex of SN and sulfured olefin. The analytical results of AES indicate that the good performance of stannous naphthenate is attributed to the formation of a boundary lubricating film containing Sn on the rubbed surface.
文摘In present research, a novel extractant system (D2EHPA + naphthenic acid + pyridine- ester) was used to purify cobalt anolyte and a simulated industrial production were carried out. This novel extraction system can extract Cu and/or Ni against Co from chloride medium solutions at pH range of 2.5-4.5. About 2g/l nickel and 0.2g/l copper were removed from the cobalt chloride anolyte containing about 100g/l cobalt and 200g/l chloride ions respectively, the raffinate contains nickel and copper less than 0.03g/l and 0.0003g/l respectively and can be used to electrolyze high-purity cobalt. About 5.5t cobalt anolyte was purified in the simulation industrial experiment and kilogram quantities of cobalt of 99.98% purity and about 95% recovery have been produced.
文摘The presence of naphthenic acids in oil sand products and process streams is the cause of toxicity to aquatic life and corrosion. The removal of organic acids from tailings pond water reduces the negative impact on marine life. The ultra-violet (UV) photocatalytic reduction of commercial naphthenic acid in water using TiO2-zeolitecomposites showed a significant decrease in the concentration of naphthenic acid, accompanied by an increase in carbon dioxide formation;the presence of carbon dioxide signifies degradation of the naphthenic acids. Mixtures of the acid and photocatalyst kept in the dark did not show any concentration changes. The extent of naphthenic acid reduction by UV light was verified by the reduction in total acidity. The total acidity values of mixtures of the acid and TiO2-zeoliteexposed to UV decreased by 31% compared to mixtures kept in the dark. A reduction in total acidity may lead to a decrease in the toxicity of naphthenic acid contaminated water.
文摘The thermal stability of oil gels formed by styrene-butadiene-styrene triblock copolymer (SBS) was improved by adding a small amount of poly(phenylene ether) (PPE), which has a higher glass transition temperature (Tg). In naphthenic oil which is a good solvent for the butadiene blocks, but a non-solvent for the styrene blocks and PPE, PPE was selectively included into styrene blocks in SBS, and induced the increase of the Tg of these blocks. The melting temperature determined by viscoelastic measurements and softening temperature of the gels were elevated by adding PPE, while no significant change was detected by adding polystyrene. The gel became opaque by adding PPE, and partially separated phases were observed by field emission scanning electron microscopy (FE-SEM). The dependence of the viscoelastic behavior on the PPE concentration can be explained by the structural change observed by FE-SEM.
文摘Naphthenic tire oils were used in winter tire tread compounding. Properties of compounds were compared with similar compounds made of other safe tire oils. Retreaded passenger car winter tires were prepared using the compounds. Traction and rolling resistance of the tires were determined in different weather conditions.It was shown that naphthenie oils may lead to improvement of winter traction and rolling resistance without compromising other tire properties.
文摘Highly acidic crude oil is thermally soaked to investigate how the temperature and time involved affect the removal of organic acid in feedstock. Experimental results indicate that thermal treatment is an effective approach to decreasing acidity and the acid removal rate reaches 80%. Temperature is one of the main factors that determine the acid removal reaction. When the temperature ranges from 420oC to 440oC, the acid removal rate increases with the rise of the reaction temperature, but the increase slows down gradually. At the reaction temperature below 440oC, the long reaction time favors the acid removal. The cracking and polymerization of hydrocarbon molecules take place so that the properties of the crude oil change at the same time when the highly acidic crude is thermally treated.
基金sponsored by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01F37).
文摘Lubricating oils are usually produced by solvent extraction to separate aromatics in order to achieve the desired specifications and better quality products.Among the different properties of lubricating oils,density and refractive index are some of the most important properties which can both be used for petroleum fluid characterization.Predictions of density and refractive index for naphthenic oils during solvent extraction by DMSO obtained by the pseudo-component approach and the quadratic correlation were both examined.The pseudo-component approach is a method to predict density and refractive index from composition while the latter merely relates density to refractive index.Results indicated that the predictions yielded by the pseudo-component method were in good agreement with experimental data for naphthenic oils.And the use of a function of refractive index(FRI_(20))as a pseudo-component property remarkably improved n_(20)predictions for the naphthenic mixtures.However,the density and refractive index predictions obtained by the quadratic correlation exhibited significantly higher de-viations for naphthenic oils than those for paraffinic oils.Thus a new modified correlation of the same functional form was proposed for naphthenic oils.The modification significantly improved predictions for naphthenic oils,which presented similar accuracy as the pseudo-component approach.And the previous correlation was still used for paraffinic oils.Additionally,effect of temperature on density and refractive index of naphthenic oils was examined.Results showed that the modified quadratic correlation was accurate for describing the relationship between density and refractive index of naphthenic oils at 20-90℃.The temperature dependence of density and refractive index for the raffinates and the extracts could be accurately described by the thermal coefficients for saturates and aromatics,respectively.Regarding the refractive index variation of the extracts with temperature,the empirical equation was proved to be a better option compared with the method using the thermal coefficient for aromatics.
文摘The removal of acid compounds (naphthenates) from acidic oil with ionic liquids was systematically investigated. [BMIM]Br-AlCl3 was used to investigate the effect on deacidification of oil. Experimental results showed that at a temperature of 323K with a molar ratio of AlCl3 to [BM1M]Br-AlCl3 of 0.2, and a mass ratio of IL to white oil of 4%, the deacidification rate could reach 75.9%. And a reaction time of 4 h was sufficient to achieve the goal. The study on reproducibility of catalytic performance of [BMIM]Br-AlCl3 showed the possibility of using the ionic liquid in the continuous catalytic reaction.
基金support of the National Natural Science Foundation of China(22078359,21276275).
文摘N-alkyl imidazolium carbonate ionic liquids were employed to separate and recover naphthenic acid from model oils.The effects of the cationic and anionic structures of ionic liquids and operating conditions on the deacidification performance were investigated.The deacidification performance of traditional organic solvents was also investigated for comparison.The results indicated that the naphthenic acid could be completely removed from the model oil with a small mass ratio of ionic liquid to oil.The extracted naphthenic acid was regenerated with a recovery of up to 92%.In addition,imidazolium carbonate ionic liquids could be successfully regenerated and recycled.The mechanism of interaction between imidazole ionic liquids and the naphthenic acid molecules were explained by Gauss calculation.
基金financially supported by the National Natural Science Foundation of China (No. 21206194)
文摘The catalytic esterification reaction was used to decrease total acid number(TAN) of crude oil by converting naphthenic acids to naphthenic acid esters in the presence of Zn-Al hydrotalcite used as the catalyst and glycol used as the reactant. The crude oil and its corresponding esterified oil were characterized by the negative-ion electrospray ionization(ESI) Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR MS). Six acidic class species, O_2, O_1, N_1, N_2, N_1O_1 and N_1O_2 were assigned in the negative-ion spectrum both in the crude oil and its esterified oil. Among the identified acidic compounds, the O2 class was dominant. The relative abundance of O_2 class species was much higher than other acidic class species in crude oil, while it was significantly decreased after esterification. The most abundant O_2 class species had a carbon number of 30-34 and a double-bond equivalence(DBE) value of 5 before and after esterification. It could be concluded that the naphthenic acids in crude oil can be esterified to lower its TAN value, and each of them seems to exhibit identical esterification efficiency approximately due to the similar DBE versus the-carbon number distribution before and after esterification.
文摘The Dar crude oil produced in Sudan was distilled into several fractions. The heteroatom class species in crude and its fractions were characterized by the negative-ion ESI FT-ICR MS. The major emphasis was put upon the study on the O2 class species (petroleum carboxylic acids). The test results revealed that aliphatic acids and monocyclic naphthenic acids accounted for a large proportion in petroleum carboxylic acids of the Dar crude. The relative abundance of aliphatic acids and monocyclic naphthenic acids decreased with an increasing boiling point of fractions. Meanwhile, the relative abundance of bicyclic and tricyclic naphthenic acids increased at first and then decreased, whereas the relative abundance of petroleum carboxylic acids with higher double-bond equivalence (DBE) values increased. The high abundance of aliphatic acids in the Dar crude and its fractions covered the carbon numbers in a range of 16 to 18 which had important geochemical signifi- cance. The O2 class species were distributed in a broad range of DBE values and carbon numbers with increasing boiling points of fractions.
基金supported by the Young Talent Fund of University Association for Science and Technology in Shaanxi, China (No. 20160222)
文摘This work was mainly concentrated on the removal of naphthenic acids(NAs) from dewaxed vacuum gas oil(VGO) by adsorption using a commercial grade activated clay(AC) adsorption during lube base oil refining. The NAs in dewaxed VGO cut-4 were identified by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry(ESI FT-ICR MS). The AC sample from a refinery was characterized by XRD, BET, TG/DTA, and SEM. A series of experiments were carried out to investigate the performance of NAs adsorption by AC using a batch adsorption technique, in which some key experimental parameters such as temperature, contact time, initial concentration of NA in oil sample as well as the dosage of adsorbent were investigated. Equilibrium isotherms were analyzed using the Langmuir, Freundlich, Tempkin and Dubinin-Radushkevich(D-R) adsorption models. The pseudo-first order, the pseudo-second order, and intraparticle diffusion models were employed to describe the kinetics data. The results revealed that the D-R isotherm provided a better fit to the experimental data than other isotherms, and the adsorption kinetics followed the pseudo-first order kinetic equation. The thermodynamic data indicated that the adsorption process was feasible and spontaneous as an endothermic process. The results could provide a clear understanding of the NAs adsorption by AC during lube base oil processing at refineries.
基金supported by the Key Laboratory of SINOPEC (KL17010)the research project of Research Institute of Petroleum Processing(R16075)
文摘High resolution tandem mass spectrometry has been applied to obtain the structure information of petroleumsamples. Here, we report a mefflod for structural characterization of crude oil molecules by the collision-induced dissocia-tion (CID) technology coupled wiffl the high-field Fourier transform ion cyclotron resonmlce mass spectrometry (FT-ICRMS). The ion isolation window was narrowed down to 1 Da to distinguish file complex homologues contained in petroleum.Aromatic model compounds and crude oil samples were measured by CID FT-ICR MS at different collision energy levels.The fragmentation of model compounds wiffl alkyl side-chains was found to be related to the size of file aromatic rings. Thefragmentation of model compounds wiffl archipelago structures depended on file lengffl of file bridge alkylene chain. Theprevalent reaction pafflway of model compounds with naphthenic rings was mainly determined by the position of naphfflen-ic rings in file molecules. On file basis of file fragmentation pathways, the structure differences of two crude oils were recog-nized as different content of naphthenic rings by CID technology with 1 Da isolation window. The NMR analysis was alsoapplied to confirm file CID results. This study exhibits the great potential of CID FT-ICR MS wiffl narrow isolation windowin file smlctural characterization of crude oil molecules.
文摘Since the 1990 s, the kerosene fuel(code: JP-8) had been applied in the ground equipment provided with direct injection compression ignition engines in the U.S. Army, resulting in increased occurrence of injection pump failures. Anti-wear additives must be used in the single fuel due to its poor lubricity. In the present work, lubricity improvers were selected on the basis of molecular simulation theoretically and these agents were evaluated to improve the lubricity of jet fuel using the high frequency reciprocating rig(HFRR) apparatus and the ball-on-cylinder lubricity evaluator(BOCLE). It was revealed that dimer acid with higher value of adsorption energy on the Fe(110) plane surface had more efficient lubricity promoting properties than that of naphthenic acid. The experimental results suggested that the dimer acid had a better tribological behavior compared with that of naphthenic acid used as lubricity improver of jet fuel. And addition of anti-wear additives at a dosage of 15 μg/g was able to promote the lubricity of jet fuel to a required level on BOCLE, while a higher concentration over 80 μg/g was needed to improve the lubricity to a demanded value of diesel on HFRR.
基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01F37).
文摘Solvent extraction is the process of separating aromatics from vacuum distillates for the production oflubricating base oils. In this study, the authors use dimethyl sulfoxide (DMSO) instead of furfural as solvent, in light of itshigher selectivity, to obtain extracts with a high aromatic content for naphthenic lubricating base oils. We systematicallyinvestigated effects of the solvent-to-oil (S/O) ratio and extraction temperature on the yield of the extract, efficiency ofaromatic removal, and composition of the extracts and raffinates. The results showed that the aromatic content of extractsfor naphthenic oils could reach a high value of about 80%. The solvent maintained a high selectivity for aromatics fornaphthenic oils even under a high S/O ratio and a high extraction temperature. Moreover, the efficiency of aromatic removalfor naphthenic lubricating base oils could be enhanced by increasing either the S/O ratio or the extraction temperature,although these measures had limited effects in practice. Following this, we used the non-random two-liquid (NRTL) modelbased on the pseudo-component approach to simulate the liquid-liquid equilibrium of the system of DMSO + naphtheniclubricating base oils, and determined the parameters of binary interaction through regression based on the data on phaseequilibrium. The modeling results showed that the predicted yield, content of the solvent, and composition of the raffinatesand extracts were in good agreement with those obtained in the experiments. This validates the reliability of the model usedto represent the DMSO + naphthenic lubricating base oil system. Both the experimental data and the method of simulationreported here can help optimize the extraction of naphthenic lubricating base oils, and provide a better understanding of thecorresponding process.