Based on the construction of reference e le ment and bilinear transformation, a quasi-Wilson element for arbitrary narrow q uadrilateral is presented. Using the interpolation Theorem for narrow quadrilate ral isoparam...Based on the construction of reference e le ment and bilinear transformation, a quasi-Wilson element for arbitrary narrow q uadrilateral is presented. Using the interpolation Theorem for narrow quadrilate ral isoparametric finite element and related methods, the bounds of interpolatio n error for arbitrary narrow quadrilateral quasi-Wilson element are obtained in case when the condition ρ K/h K≥σ 0】0 is not satisfied, where h K is the diameter of the element K and ρ K is the diameter of an ins cribed circle in K. The interpolation error is O(h2 K) in the L2( K)-norm and O(h K) in the H1(K) -norm provided that the in terpolated function belongs to H2(K).展开更多
文摘Based on the construction of reference e le ment and bilinear transformation, a quasi-Wilson element for arbitrary narrow q uadrilateral is presented. Using the interpolation Theorem for narrow quadrilate ral isoparametric finite element and related methods, the bounds of interpolatio n error for arbitrary narrow quadrilateral quasi-Wilson element are obtained in case when the condition ρ K/h K≥σ 0】0 is not satisfied, where h K is the diameter of the element K and ρ K is the diameter of an ins cribed circle in K. The interpolation error is O(h2 K) in the L2( K)-norm and O(h K) in the H1(K) -norm provided that the in terpolated function belongs to H2(K).