Natural antioxidants, due to the different chemical structures and their unique biological protection effects on islet cell, have been received much attention in applied chemistry field for developing a new diabetic d...Natural antioxidants, due to the different chemical structures and their unique biological protection effects on islet cell, have been received much attention in applied chemistry field for developing a new diabetic drug. However, the molecular targets of the islet cell protection have been remained obscure. For investigating molecular targets of combined natural antioxidant’s(CNA) roles in against diabetes, type 1 diabetic mouse model was made by multiple injection of low doses of streptozotocin into C57BL mice. Two combinations of natural antioxidants were orally supplemented to the mice. Blood glucose level, glutathione peroxidase(GSH-Px) and superoxide dismutase (SOD) activities, and malondialdehyde(MDA) contents were measured via biochemical assays. Tumor necrosis factor α(TNF-α), interferon γ(IFN-γ) and Interleukin-12(IL-12) in CD4+ Peripheral blood mononuclear cells(PBMC) were evaluated with flow cytometry(FCM). In situ hybridization(ISH) and immunohistochemistry(IHC) were used to detect insulin gene expression. The results demonstrate both the combinations significantly: increased GSH-px and SOD, but decreased MDA levels in pancreas(p〈0.05―0.01); up-regulated insulin expression at both mRNA and protein levels in islet cells(p〈0.05―0.01); down-regulated TNF-α and IL-12 expression in PBMC(p〈0.05―0.01). Our data suggest that the CAN may regulate multiple key molecular targets related to β cell function, including reduction of oxidative stress and pre-inflammatory cytokines, and upregulate insulin gene expression to reduce the development of diabetes.展开更多
The objective of this investigation is to analyze the impact of the flue gas recirculation (FGR) ratio on the different energy inputs and outputs of a SNGCC power plant as well as its overall efficiency. Simulation re...The objective of this investigation is to analyze the impact of the flue gas recirculation (FGR) ratio on the different energy inputs and outputs of a SNGCC power plant as well as its overall efficiency. Simulation results indicate that increasing flue gas recirculation increases the energy consumed by the recirculation compressor and the energy produced by the gas turbine. On the other hand, it decreases the production of energy of the steam turbine and the energy consumed by the pump of the steam cycle. The overall energy efficiency of the SNGCC power plant is highest (41.09%) at a value of 0.20 of the flue gas recirculation. However, the flue gas composition with a FGR ratio of 0.37 is more suitable for effective absorption of carbon dioxide by amine solutions. Based on the low heating value (LHV) of hydrogen, the corresponding overall efficiency of the power plant is 39.18% and the net power output of the plant is 1273 kW for consumption of 97.5 kg/hr. of hydrogen.展开更多
The objective of the first part of the investigation was to use Aspen Plus software and the Redlich-Kwong-Soave equation of state in order to simulate an adiabatic methanation reactor for the production of synthetic n...The objective of the first part of the investigation was to use Aspen Plus software and the Redlich-Kwong-Soave equation of state in order to simulate an adiabatic methanation reactor for the production of synthetic natural methane (SNG) using 1 kg/hr<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">of carbon dioxide. In this paper, we define the Synthetic Natural Gas Combined Cycle (SNGCC) as a combined cycle power plant where the fuel is synthetic natural gas (SNG) produced by a methanation reactor. The feed of the methanation reactor is the recycled stream of carbon dioxide of a CO<sub>2</sub> capture unit treating the flue gas of the SNGCC power plant. The objective of the second part of the investigation is the utilization of Aspen plus software with SRK equation of state for the simulation of the SNGCC power plant. The metallurgical limitation of the gas turbine was fixed at 1300<sup><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°<span style="font-family:Verdana;white-space:normal;"></span></span></sup></span></span>C in this investigation. For effective absorption by amine solutions, the molar percentage of CO<sub>2</sub> in the flue gas should be higher than 10%. Moreover, in order to reduce technical problems linked to oxidative degradation of amine in the CO<sub>2</sub> capture plant, the percentage of O<sub>2</sub> in the flue gas should also be lower than 5%. To reach this goal, the primary air for combustion has 10% excess air (compared to stoichiometric air) and 37% of the flue </span><span style="font-family:Verdana;">gas leaving the SNGCC is recirculated as the secondary air for cooling the</span><span style="font-family:Verdana;"> turbine</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> As a result, the concentration of CO<sub>2</sub> and O<sub>2</sub></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of the flue gas entering the CO<sub>2</sub> capture unit were respectively equal to 10.2% and 2.01%. The simulation results of the SNGCC power plant indicate that 6.6 MJ of electricity are produced for each kg of carbon dioxide recycled from the CO<sub>2</sub> capture unit of the power plant. In other terms, the production of the 24.88 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of synthetic natural gas (SNG) consumes 62.36 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of recycled carbon dioxide and 16.4 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of hydrogen. The SNG produced by the methanation reactor of the power plant generates 114 kW of electricity. It is assumed in this paper that the hydrogen needed for the methanation of carbon dioxide is a product of a catalytic reforming plant that produces gasoline from heavy naphta fraction of an atmospheric distillation unit of crude oil.</span></span></span>展开更多
This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suc...This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suction velocity of fluids, The analytical results for the problem are obtained based on the method of small parameter, and show that the natural circulation in the porous medium is affected by this kind of oscillation.展开更多
基金Supported by the National Natural Science Foundation of China(No.39870667)the Scientific Research Foundation of Jilin Province, China(Nos.2007-0722, 2007-05265, 2008-2123, 20100942) the Project of Developing and Reforming Community of Jilin Province, China (Nos.2006-1550, 2003-1268, 2010-1928, 20080925, 20101928)
文摘Natural antioxidants, due to the different chemical structures and their unique biological protection effects on islet cell, have been received much attention in applied chemistry field for developing a new diabetic drug. However, the molecular targets of the islet cell protection have been remained obscure. For investigating molecular targets of combined natural antioxidant’s(CNA) roles in against diabetes, type 1 diabetic mouse model was made by multiple injection of low doses of streptozotocin into C57BL mice. Two combinations of natural antioxidants were orally supplemented to the mice. Blood glucose level, glutathione peroxidase(GSH-Px) and superoxide dismutase (SOD) activities, and malondialdehyde(MDA) contents were measured via biochemical assays. Tumor necrosis factor α(TNF-α), interferon γ(IFN-γ) and Interleukin-12(IL-12) in CD4+ Peripheral blood mononuclear cells(PBMC) were evaluated with flow cytometry(FCM). In situ hybridization(ISH) and immunohistochemistry(IHC) were used to detect insulin gene expression. The results demonstrate both the combinations significantly: increased GSH-px and SOD, but decreased MDA levels in pancreas(p〈0.05―0.01); up-regulated insulin expression at both mRNA and protein levels in islet cells(p〈0.05―0.01); down-regulated TNF-α and IL-12 expression in PBMC(p〈0.05―0.01). Our data suggest that the CAN may regulate multiple key molecular targets related to β cell function, including reduction of oxidative stress and pre-inflammatory cytokines, and upregulate insulin gene expression to reduce the development of diabetes.
文摘The objective of this investigation is to analyze the impact of the flue gas recirculation (FGR) ratio on the different energy inputs and outputs of a SNGCC power plant as well as its overall efficiency. Simulation results indicate that increasing flue gas recirculation increases the energy consumed by the recirculation compressor and the energy produced by the gas turbine. On the other hand, it decreases the production of energy of the steam turbine and the energy consumed by the pump of the steam cycle. The overall energy efficiency of the SNGCC power plant is highest (41.09%) at a value of 0.20 of the flue gas recirculation. However, the flue gas composition with a FGR ratio of 0.37 is more suitable for effective absorption of carbon dioxide by amine solutions. Based on the low heating value (LHV) of hydrogen, the corresponding overall efficiency of the power plant is 39.18% and the net power output of the plant is 1273 kW for consumption of 97.5 kg/hr. of hydrogen.
文摘The objective of the first part of the investigation was to use Aspen Plus software and the Redlich-Kwong-Soave equation of state in order to simulate an adiabatic methanation reactor for the production of synthetic natural methane (SNG) using 1 kg/hr<span><span><span style="font-family:;" "=""> </span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">of carbon dioxide. In this paper, we define the Synthetic Natural Gas Combined Cycle (SNGCC) as a combined cycle power plant where the fuel is synthetic natural gas (SNG) produced by a methanation reactor. The feed of the methanation reactor is the recycled stream of carbon dioxide of a CO<sub>2</sub> capture unit treating the flue gas of the SNGCC power plant. The objective of the second part of the investigation is the utilization of Aspen plus software with SRK equation of state for the simulation of the SNGCC power plant. The metallurgical limitation of the gas turbine was fixed at 1300<sup><span style="font-family:Verdana, Helvetica, Arial;white-space:normal;background-color:#FFFFFF;">°<span style="font-family:Verdana;white-space:normal;"></span></span></sup></span></span>C in this investigation. For effective absorption by amine solutions, the molar percentage of CO<sub>2</sub> in the flue gas should be higher than 10%. Moreover, in order to reduce technical problems linked to oxidative degradation of amine in the CO<sub>2</sub> capture plant, the percentage of O<sub>2</sub> in the flue gas should also be lower than 5%. To reach this goal, the primary air for combustion has 10% excess air (compared to stoichiometric air) and 37% of the flue </span><span style="font-family:Verdana;">gas leaving the SNGCC is recirculated as the secondary air for cooling the</span><span style="font-family:Verdana;"> turbine</span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> As a result, the concentration of CO<sub>2</sub> and O<sub>2</sub></span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of the flue gas entering the CO<sub>2</sub> capture unit were respectively equal to 10.2% and 2.01%. The simulation results of the SNGCC power plant indicate that 6.6 MJ of electricity are produced for each kg of carbon dioxide recycled from the CO<sub>2</sub> capture unit of the power plant. In other terms, the production of the 24.88 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of synthetic natural gas (SNG) consumes 62.36 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of recycled carbon dioxide and 16.4 kg/hr</span></span></span><span><span><span style="font-family:;" "=""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">of hydrogen. The SNG produced by the methanation reactor of the power plant generates 114 kW of electricity. It is assumed in this paper that the hydrogen needed for the methanation of carbon dioxide is a product of a catalytic reforming plant that produces gasoline from heavy naphta fraction of an atmospheric distillation unit of crude oil.</span></span></span>
文摘This paper studies the unsteady heat and mass natural convection in a highly porous medium bounded by an infinite vertical porous wall. The unsteady source of the problem arises from the transverse oscillations in suction velocity of fluids, The analytical results for the problem are obtained based on the method of small parameter, and show that the natural circulation in the porous medium is affected by this kind of oscillation.