期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Impact of Crosswind on Steady-State and Dynamic Performance of Natural Draft Dry Cooling Tower Group:A Numerical Analysis
1
作者 Xuhui Jiang Xi Zhang +4 位作者 Song Wang Ruiqiong Wang Peng Zou Jingzhou Lu Xiaoxiao Li 《Frontiers in Heat and Mass Transfer》 EI 2024年第1期193-216,共24页
This study investigates the performance of a natural draft dry cooling tower group in crosswind conditions through numerical analysis.A comprehensive three-dimensional model is developed to analyze the steady-state an... This study investigates the performance of a natural draft dry cooling tower group in crosswind conditions through numerical analysis.A comprehensive three-dimensional model is developed to analyze the steady-state and dynamic behavior of the towers.The impact of wind speed and direction on heat rejection capacity and flow patterns is examined.Results indicate that crosswinds negatively affect the overall heat transfer capacity,with higher crosswind speeds leading to decreased heat transfer.Notably,wind direction plays a significant role,particularly at 0°.Moreover,tower response time increases with higher crosswind speeds due to increased turbulence and the formation of vortices.The response times are generally similar for wind directions of 45°and 90°,but differ when facing 0,where the leeward tower exhibits a shorter response time compared to the windward tower.These findings provide valuable insights into the performance of natural draft dry cooling tower groups under crosswind conditions,which can inform the design and operation of similar systems in practical applications. 展开更多
关键词 natural draft dry cooling tower group CROSSWIND dynamic characteristics
下载PDF
NUMERICAL INVESTIGATION OF THE ADVERSE EFFECT OF WIND ON THE HEAT TRANSFER PERFORMANCE OF TWO NATURAL DRAFT COOLING TOWERS IN TANDEM ARRANGEMENT 被引量:2
2
作者 符松 翟志强 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第1期24-34,共11页
This article reports the findings on the adverse effect of the crosswind on the performance of natural draft cooling towers through numerical computation with the k-epsilon eddy-viscosity turbulence model. It is obser... This article reports the findings on the adverse effect of the crosswind on the performance of natural draft cooling towers through numerical computation with the k-epsilon eddy-viscosity turbulence model. It is observed here that the cause of the adverse effect of the crosswind on the cooling towers call be attributed to the around flow effect which destroys the radial inflow into the cooling towers when the wind is absent. Hence, a significant deterioration in the heat transfer from the heat exchangers at lateral sides occurs. 展开更多
关键词 natural draft cooling tower buoyancy flow CROSSWIND k-epsilon model
下载PDF
A decoupled method to identify affecting mechanism of crosswind on performance of a natural draft dry cooling tower 被引量:1
3
作者 Weiliang WANG Junfu LYU +3 位作者 Hai ZHANG Qing LIU Guangxi YUE Weidou NI 《Frontiers in Energy》 SCIE CSCD 2020年第2期318-327,共10页
The natural draft dry cooling tower(NDDCT)has been increasingly used for cooling in power generation in arid area.As crosswind affects the performance of a NDDCT in a complicated way,and the basic affecting mechanism ... The natural draft dry cooling tower(NDDCT)has been increasingly used for cooling in power generation in arid area.As crosswind affects the performance of a NDDCT in a complicated way,and the basic affecting mechanism is unclear,attempts have been made to improve the performance of a NDDCT based on limited experiences.This paper introduces a decoupled method to study the complicated crosswind effects on the inlet and outlet of a NDDCT separately by computational fluid dynamics(CFD)modeling and hot state experiments.Accordingly,the basic affecting mechanism of crosswind on the NDDCT performance is identified.Crosswind changes the inlet flow field of a NDDCT and induces mainstream vortices inside the tower,so as to degrade the ventilation.Besides,low crosswind deflects the upward plume at the outlet to further degrade the ventilation,while high crosswind induces the low pressure area at the outlet to reduce the ventilation degradation. 展开更多
关键词 affecting mechanism CROSSWIND decoupled method mainstream vortices natural draft dry cooling tower(NDDCT) degradation
原文传递
Experimental Study of Effects of Cross Wind on Flow in Natural-draft Dry-cooling Towers
4
作者 翟志强 朱克勤 符松 《Tsinghua Science and Technology》 SCIE EI CAS 1998年第2期9-12,共4页
The effects of cross wind on the flow field in natural draft dry cooling towers are studied experimentally in a wind tunnel using similarity principles. Particular attention is focused on the flow fields inside the to... The effects of cross wind on the flow field in natural draft dry cooling towers are studied experimentally in a wind tunnel using similarity principles. Particular attention is focused on the flow fields inside the tower. The study illustrates the influence of wind on the cooling tower performance and proposes a number of techniques for improving tower performance with a cross wind 展开更多
关键词 natural draft dry cooling tower cross wind AERODYNAMICS model experiment
原文传递
A Novel Approach for Energy Efficiency Prediction of Various Natural Draft Wet Cooling Towers Using ANN
5
作者 SONG Jialiang CHEN Yongdong +2 位作者 WU Xiaohong RUAN Shengqi ZHANG Zhongqing 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第3期859-868,共10页
Cooling tower is crucial equipment in the cool-end system of power plant and the natural draft counter-flow wet cooling tower(NDWCT)gets wide application.The artificial neural network(ANN)technique is becoming an effe... Cooling tower is crucial equipment in the cool-end system of power plant and the natural draft counter-flow wet cooling tower(NDWCT)gets wide application.The artificial neural network(ANN)technique is becoming an effective method for the thermal performance investigation of cooling towers.However,the neural network research on the energy efficiency performance of NDWCTs is not sufficient.In this paper,a novel approach was proposed to predict energy efficiency of various NDWCTs by using Back Propagation(BP)neural network:Firstly,based on 638 sets of field test data within 36 diverse NDWCTs in power plant,a three-layer BP neural network model with structure of 8-14-2 was developed.Then the cooling number and evaporation loss of water of different NDWCTs were predicted adopting the BP model.The results show that the established BP neural network has preferable prediction accuracy for the heat and mass transfer performance of NDWCT with various scales.The predicted cooling number and evaporative loss proportion of the testing cooling towers are in good agreement with experimental values with the mean relative error in the range of 2.11%–4.45%and 1.04%–4.52%,respectively.Furthermore,the energy efficiency of different NDWCTs can also be predicted by the proposed BP model with consideration of evaporation loss of water in cooling tower.At last,a novel method for energy efficiency prediction of various NDWCTs using the developed ANN model was proposed.The energy efficiency index(EEI)of different NDWCTs can be achieved readily without measuring the temperature as well as velocity of the outlet air. 展开更多
关键词 natural draft wet cooling tower artificial neural network(ANN) energy efficiency evaporation loss of water power plant
原文传递
Spray Effect on the Thermal Performances of a Dry Cooling Tower
6
作者 Zhe Geng Feng Feng +5 位作者 Shuzhen Zhang Jie Li Chengwei Liu Yang Li Tiantian Liu Suoying He 《Fluid Dynamics & Materials Processing》 EI 2023年第9期2289-2304,共16页
Pre-cooling the inlet air of a dry cooling tower by means of a spray can improve the tower performance during periods of high temperature.To study the spray effect on the thermal performance of natural draft dry cooli... Pre-cooling the inlet air of a dry cooling tower by means of a spray can improve the tower performance during periods of high temperature.To study the spray effect on the thermal performance of natural draft dry cooling towers(NDDCTs),in this study 3-D numerical simulations of such a process have been conducted using Fluent 16.2(a two-way coupled Eulerian-Lagrangian approach).The considered NDDCT is 120 m high and only half system is simulated due to its structural symmetry.Three different spray strategies have been investigated at a typical crosswind speed of 4 m/s,which is the most frequent wind speed.The results have shown that:(1)The three implemented spray strategies can improve the thermal performance of the studied NDDCT with a vary-ing degree of success.In one case,the heat rejection rate can be increased by 35.2%,and the tower outlet water temperature can be decreased by 2.1℃ when compared with the no spray case;(2)To improve the thermal per-formance of the NDDCT using a small amount of water,the design of the spray pre-cooling system must include more nozzles on the windward and fewer or even no nozzles on the leeward sides of the NDDCT. 展开更多
关键词 natural draft dry cooling tower spray strategy thermal performance SIMULATION
下载PDF
STUDY ON THE AIRFLOW RESISTANCE IN NATURAL DRAFT COOLING TOWERS
7
作者 Zhao Zhen-guo, Shi Jin-ling, Chen Xian-songDepartment of Cooling Water, Institute of Water Conservancy and Hydroelectric Power Research (IWHR),Beijing 100044, P. R. China 《Journal of Hydrodynamics》 SCIE EI CSCD 1994年第3期7-14,共8页
A new approach for improving the calculation of the airflow resistance coefficient of natural draft cooling towers from the inlet to throat (4) has been presented in this paper. The suggested equations areWhere. ζ1 i... A new approach for improving the calculation of the airflow resistance coefficient of natural draft cooling towers from the inlet to throat (4) has been presented in this paper. The suggested equations areWhere. ζ1 is the coefficient of the airflow resistance with no consideration of waterdrop in rain zone, ζ2 is the coefficient of the airflow resistance due to falling of waterdrop in rain zone, s is the rate of the inlet area to the area at elevation of the packing, q is the water loading, V0 air velocity at the packing section. 展开更多
关键词 natural draft cooling towers airflow resistance.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部