Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,ar...Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,are polyphenols formed by oligomers or polymers of flavan-3-ol units derived from anthocyanidins.Three essential structural genes for flavanone and flavonoid hydroxylation encoding flavanone-3-hydroxylase(F3H),flavonoid 3’-hydroxylase(F3’H)and flavonoid 3’5’-hydroxylase(F3’5’H)are initially committed in the flavonoid biosynthesis pathway to produce common precursors.The three genes were all expressed predominantly in developing fibers of NCCs,and their expression patterns varied temporally and spatially among NCC varieties.In GhF3Hi,GhF3’Hi and GhF3’5’Hi silenced lines of NCC varieties XC20 and ZX1,the expression level of the three genes decreased in developing cotton fiber,negatively correlated with anthocyanidin content and fiber color depth.Fiber color depth and type in RNAi lines changed with endogenous gene silencing efficiency and expression pattern,the three hydroxylase genes functioned in fiber color formation.GhF3H showed functional differentiation among NCC varieties and GhF3’H acted in the accumulation of anthocyanin in fiber.Compared with GhF3’H,GhF3’5’H was expressed more highly in brown fiber with a longer duration of expression and caused lighter color of fibers in GhF3’5’H silenced lines.These three genes regulating fiber color depth and type could be used to improve these traits by genetic manipulation.展开更多
The genetic control of fiber pigment color in naturally colored cotton was studied. The expression of brown and green fiber color was controlled by incompletely dominant single genes and incompletely dominant major ge...The genetic control of fiber pigment color in naturally colored cotton was studied. The expression of brown and green fiber color was controlled by incompletely dominant single genes and incompletely dominant major genes, respectively. Production and accumulation of the fiber pigment were related to special expression of enzymatic genes for pigment synthesis in fiber cells. At the stage of fiber lengthening, naturally colored cotton, like white cotton, appeared purely white. But when fiber cell walls entered the thickening stage, pigment appeared by degrees. When the fiber was completely matured (on boll dehiscence), the color reached its darkest level. After wetting process treatment, the hues of the fiber pigment changed in regular patterns. The hue circle for brown and green cotton changed in the opposite direction with wetting process treatment. In general, the treated cotton color and luster became dark and vivid, and this trend provided the possibility for enhancing the fiber quality by suitable environmental friendly finishing. The analysis showed that the color and luster of the cotton may be controlled by a series of pigments which show different chemical performance.展开更多
Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile streng...Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS)and California bearing ratio(CBR)and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS)and bagasse(BG)as well as synthetic polyester(PET)fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1%and 2%)and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2%of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43%and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM)analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length.展开更多
A mixture of NaOH and Na2SO3 was used in modification of banana stem fibers (BSF). Unidirectional BSF reinforced natural rubber (NR) lamina composites were made using compression moulding method. The results of the te...A mixture of NaOH and Na2SO3 was used in modification of banana stem fibers (BSF). Unidirectional BSF reinforced natural rubber (NR) lamina composites were made using compression moulding method. The results of the tensile loading in 0°, 45° and 90° to the fiber directions of the composite with fiber mass fraction of 30% were studied. Surface modification of the BSF with a mixture of 4% NaOH and 2% Na2SO3 increased the tensile strength and elastic modulus of the composite to 4.03 MPa and 147.34 MPa respectively from 3.12 MPa and 84.30 MPa of the untreated. Variation in properties due to fiber orintations was observed indicating a higher value of properties in the 0° fiber orientation than in 45° and 90° directions. The result of scanning electron microscope (SEM) micrographs of the surfaces of the fibers indicted an improvement in bonding of the fiber bundles prior to lamination with natural rubber as a result of surface treatment which resulted in its higher tensile strength.展开更多
Natural Nanoskin Advance cell therapy (ACT) and Nanoskin ACT Soft have been established to be remarkably versatile biomaterials and can be used in a wide variety of applied scientific endeavors, especially for medical...Natural Nanoskin Advance cell therapy (ACT) and Nanoskin ACT Soft have been established to be remarkably versatile biomaterials and can be used in a wide variety of applied scientific endeavors, especially for medical devices. In fact, the structure of Nanoskin materials can be adapted over length scales ranging from nano to macro by controlling the bio-fabrication process. The present paper describes Natural Nanoskin Advanced cell therapy (ACT) and Nanoskin ACT Soft production for wound care applications. ACT is produced from the bio-nanotechnology process. ACT is a highly hydrated pellicle with shaped fibers less than 2 nm wide. Nanoskin ACT Soft, like a paste, is designed to fill irregularities or recesses in the wound bed, and to absorb excess exudate from lesions by prolonging the used dressing's residence time and reducing the frequency of change.展开更多
This article contributes to the development of the new class of fully biodegradable “green” composites by combining fibers (natural/bio) with biodegradable resin. The vegetable fibers (Triumfetta cordifolia and suga...This article contributes to the development of the new class of fully biodegradable “green” composites by combining fibers (natural/bio) with biodegradable resin. The vegetable fibers (Triumfetta cordifolia and sugarcane bagasse) treated with NaOH and bleached were incorporated into a natural rubber matrix. The influence of the fiber ratio on the physical properties, tensile strength and surface hardness of the hybrid composites was analyzed. The results show that the addition of fibers in the natural rubber matrix increases the water absorption capacity but gradually reduces it with increasing fiber ratio. The hybrid composites of the NRT50-50B proportions show the best tensile strengths at 20 phr and a shore A hardness of 43.7 at 30 phr. The combination of two fibers has improved the physical and mechanical properties of the hybrid composites which can be used in engineering applications.展开更多
In this study,natural bamboo fiber was prepared combining chemical pretreatment with mechanical disc refining,opening,and carding.An orthogonal experiment was designed based on four factors and three levels;thereafter...In this study,natural bamboo fiber was prepared combining chemical pretreatment with mechanical disc refining,opening,and carding.An orthogonal experiment was designed based on four factors and three levels;thereafter,the manufacturing process was optimized.The length,diameter,tensile strength,and elastic modulus of the bamboo fiber were determined,and the crystallinity and morphology of the fiber were analyzed using X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results showed that the optimum parameters for the chemical pretreatment were a cooking temperature of 130℃,heating time of 2 h,NaOH dosage of 2%,and Na2SO3 dosage of 10%.The cooking yield of bamboo chips was 89.5%,and the carding yield of natural bamboo fiber was 43.0% under the optimum conditions.The length,diameter,tensile strength,and elastic modulus of the obtained fiber were 36.71 mm,0.285 mm,407 MPa,and 27.7 GPa,respectively.XRD analysis and SEM observations showed that the technology used in this study can produce bright and compact natural bamboo fibers with high crystallinity.展开更多
Natural fiber reinforced polymer composites(NFRCs)have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites,such ...Natural fiber reinforced polymer composites(NFRCs)have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites,such as low environmental impact and low cost.However,one of the drawbacks is that the NFRCs present relatively low mechanical properties and the absorption of humidity due to the hydrophilic characteristic of the natural fibre.One method to increase their performance is hybridization.Therefore,understanding the properties and potential of using multiple reinforcement’s materials to develop hybrid composites is of great interest.This paper provides an overview of the recent advances in hybrid natural fiber reinforced polymer composites.First,the main factors that affect the performance of hybrid fiber-reinforced composites were briefly discussed.The effect of hybridization on the mechanical and thermal properties of hybrid composites reinforced with several types of natural fibers(i.e.,sisal,jute,curauá,ramie,banana,etc.)or natural fibers combined with synthetic fibers is pre-sented.Finally,the water absorption behaviour of hybrid fiber-reinforced composites is also discussed.It was con-cluded that the main challenges that need to be addressed in order to increase the use of natural-natural or natural-synthetic hybrid composites in industry are the poor adhesion between natural fibers and matrix,thermal stability and moisture absorption of natural fibers.Some of these challenges were addressed by recent develop-ment in fibers treatment and modification,and product innovation(hybridization).展开更多
In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injecti...In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injection molded composites was investigated by carrying out tensile and banding tests, followed by Scanning electron microscopy (SEM) observation of fiber surface and fracture surface of composites. The tensile strength of natural fiber and natural fiber reinforced composites with resin impregnation method increases with Polyvinyl alcohol (PVA) impregnation. In addition, Phenol resin impregnation recovers fiber tensile strength after alkali treatment. Resin impregnation causes decrease in contact surface area;however, it does not cause decrease in mechanical properties. Our results suggest that the using rein impregnation method has better effect on the mechanical properties of natural fiber reinforced Polypropylene (PP) composites.展开更多
The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to pr...The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to produce high value products that have technical and environmental demand. The two treatment methods used for rice straw are alkali and acidic treatments of rice straw. The removal of impurities and waxy substances from fiber surface avoid creation of rougher topography after treatment and improves the quality of fiber, also content of hemi cellulose and lignin decrease so increase effectiveness of fiber due to dispersing of fiber in matrix. The reinforcing material is embedded in the matrix material to enhance tensile and flexural behaviors of the synthesized composite. The result of investigating these two mechanical properties, using statistical analysis & design of experiments, showed an enhancement in the mechaniccal properties of the virgin polymer composite compared to the virgin polymer. The flexural stress of the composite increased three times the virgin flexural stress, while the tensile stress increased eight times the original tensile stress.展开更多
The enforcement on sustainable design and environmental-friendly products has attracted the interest of researchers and engineers in the context of replacing metals and synthetic fibers with natural based fibers,espec...The enforcement on sustainable design and environmental-friendly products has attracted the interest of researchers and engineers in the context of replacing metals and synthetic fibers with natural based fibers,especially in the automotive industry.However,studies on sustainable natural fiber material selection in the automotive industry are limited.Evaluation for the side-door impact beam was conducted by gathering product design specification from literature which amounted to seven criteria and it was forwarded to ten decision makers with automotive engineering and product design background for evaluation.The weightage required for decision-making was obtained using the Analytic Hierarchy Process(AHP)method based on six criteria.Following this,the best natural fiber materials to be used as reinforcement in polymer composites were selected using the VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.The results using both the AHP and VIKOR method showed that kenaf was the best natural fiber for the side-door impact beam composites.The result showed the lowest VIKOR value,QA1=0.0000,which was determined to be within the acceptable advantage and acceptable stability conditions.It can be concluded that the application of integrated AHP-VIKOR method resulted in a systematic and justified solution towards the decision-making process.展开更多
Natural fibres will take a major role in the emerging “green” economy based on energy efficiency, the use of renewable materials in polymer products, industrial processes that reduce carbon emissions and recyclable ...Natural fibres will take a major role in the emerging “green” economy based on energy efficiency, the use of renewable materials in polymer products, industrial processes that reduce carbon emissions and recyclable materials that minimize waste. Natural fibres are a kind of renewable resources, which have been renewed by nature and human ingenuity for thousands of years. They are also carbon neutral;they absorb the equal amount of carbon dioxide they produce. These fibers are completely renewable, environmental friendly, high specific strength, non-abrasive, low cost, and bio-degradability. Due to these characteristics, natural fibers have recently become attractive to researchers and scientists as an alternative method for fibers reinforced composites. This review paper summarized the history of natural fibers and its applications. Also, this paper focused on different properties of natural fibers (such as hemp, jute, bamboo and sisal) and its applications which were used to substitute glass fiber.展开更多
In the present scenario, there has been a rapid attention in research and development in the natural fiber composite field due to its better formability, abundant, renewable, cost-effective and eco-friendly features. ...In the present scenario, there has been a rapid attention in research and development in the natural fiber composite field due to its better formability, abundant, renewable, cost-effective and eco-friendly features. This paper exhibits an outline on natural fibers and its composites utilized as a part of different commercial and engineering applications. In this review, many articles were related to applications of natural fiber reinforced polymer composites. It helps to provide details about the potential use of natural fibers and its composite materials, mechanical and physical properties and some of their applications in engineering sectors.展开更多
Natural Fiber Honeycomb (NFH) sandwiched structure composite is a type of composite that uses natural fiber as the reinforcement material and honeycomb structure in the form of a sandwich panel. The demand for commerc...Natural Fiber Honeycomb (NFH) sandwiched structure composite is a type of composite that uses natural fiber as the reinforcement material and honeycomb structure in the form of a sandwich panel. The demand for commercial use of natural fiber-based composites is increasing in the past few years in many industrial sectors. The increase in popularity of natural fibers is because of their particular properties, price, health benefits, and recyclability. This paper aims to analyze the data and analysis of the past research about NFH sandwiched structure composite in terms of the materials used to make the NFH, the physical and mechanical properties, and their applications. Based on the literature review conducted, there were many types of materials used to make the NFH sandwiched structure composite. Some experimental tests were planned and conducted to analyze the mechanical properties of the NFH and its potential to be used in the desired industries. However, there are not many implementations of NFH composite in the construction industry. This is due to the concern related to the issue of the structural integrity of the NFH composite. From the literature review conducted, most of the research shows a positive analysis of the mechanical properties and the potential of the developed NFH to be used for the targeted industry in the study. Therefore, it can be observed that the material used in this study has a high potential to be used in the construction industry.展开更多
Nowadays, the use of natural fiber reinforced polymer-based composites is gradually increasing day by day for their many advantages for civil engineering construction applications. Due to their many advantages for pol...Nowadays, the use of natural fiber reinforced polymer-based composites is gradually increasing day by day for their many advantages for civil engineering construction applications. Due to their many advantages for polymer-based composite materials are widely used in civil construction, automobiles, aerospace, and many others. Natural fibers such as jute, kenaf, pineapple, sugarcane, hemp, oil palm, flax, and leaf, etc. are cheap, environmentally friendly, renewable, completely and partially biodegradable which can be utilized to obtain new high-performance polymer materials. These composites are having satisfactory mechanical properties (i.e. tensile properties, flexural stress-strain behavior, fracture toughness, and fracture strength) which make them more attractive than other composites. Due to easy availability and renewability, natural fibers can be used as an alternative of synthetic fibers as a reinforcing agent. The aim of this paper is to review different natural fibers reinforced based polymer composites with mechanical characterization, applications, also shows the opportunities, challenges and future demand of natural composite material towards civil applications.展开更多
The use of composites in different sectors has become inevitable due to the enhancement in properties, reduction in the manufacturing cost and suitability to several applications. Among different classifications, poly...The use of composites in different sectors has become inevitable due to the enhancement in properties, reduction in the manufacturing cost and suitability to several applications. Among different classifications, polymeric composites are mainly focused on their use as structural components and the selection and composition of reinforcement play a vital role in determining the characteristics of the composite. Although composites are developed with man-made reinforcement in the beginning stage, in the present situation, natural reinforcements have proved excellent results in terms of properties. Hence, nowadays researches are mainly focused on the use of different natural fibers in different forms as reinforcements in polymeric composite. This work presents a brief overview on the properties of natural fiber and natural fiber reinforced composites which is an emerging area in polymer science. Interests in natural fiber is reasonable due to the advantages of these materials compared to others, such as synthetic fiber composites, including low environmental impact and low cost and support their potential to be used. Moreover, the disadvantage of the synthetic and fiber-glass as reinforcement, the use of natural fiber reinforced composite gained the attention of the young scientists, researchers, and engineers and are being exploited as a replacement for the conventional fiber such as glass, aramid, carbon etc. Natural fibers have been proven alternative to synthetic fiber in transportation such as automobiles, railway coaches and aerospace, military, building, packaging, consumer products and construction industries for ceiling paneling, partition boards etc. However, in development of these composites, some drawbacks have also emerged. In this paper, it has been tried to overview all of this together.展开更多
In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and rene...In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.展开更多
Genetic linkage relationship of the natural colored fiber and six fuzzless seed germplasms in obsolete backgrounds of Gossypium hirsutum(AD genome) and G.barbadense were analyzed in the
基金supported by the Natural Science Foundation of Zhejiang Province(LZ21C130004)the National Natural Science Foundation of China(U1903204)he Fundamental Research Funds of Shaoxing Keqiao Research Institute of Zhejiang Sci-Tech University(KYY2021004S)。
文摘Using naturally colored cotton(NCC)can eliminate dyeing,printing and industrial processing,and reduce sewage discharge and energy consumption.Proanthocyanidins(PAs),the primary coloration components in brown fibers,are polyphenols formed by oligomers or polymers of flavan-3-ol units derived from anthocyanidins.Three essential structural genes for flavanone and flavonoid hydroxylation encoding flavanone-3-hydroxylase(F3H),flavonoid 3’-hydroxylase(F3’H)and flavonoid 3’5’-hydroxylase(F3’5’H)are initially committed in the flavonoid biosynthesis pathway to produce common precursors.The three genes were all expressed predominantly in developing fibers of NCCs,and their expression patterns varied temporally and spatially among NCC varieties.In GhF3Hi,GhF3’Hi and GhF3’5’Hi silenced lines of NCC varieties XC20 and ZX1,the expression level of the three genes decreased in developing cotton fiber,negatively correlated with anthocyanidin content and fiber color depth.Fiber color depth and type in RNAi lines changed with endogenous gene silencing efficiency and expression pattern,the three hydroxylase genes functioned in fiber color formation.GhF3H showed functional differentiation among NCC varieties and GhF3’H acted in the accumulation of anthocyanin in fiber.Compared with GhF3’H,GhF3’5’H was expressed more highly in brown fiber with a longer duration of expression and caused lighter color of fibers in GhF3’5’H silenced lines.These three genes regulating fiber color depth and type could be used to improve these traits by genetic manipulation.
基金This work was supported by Innovation and Utilization of Specially Good Germplasm Material of Naturally Colored Cotton of the“863”Plan,China(2001AA241089)Research on Breeding of New Variety for Naturally Colored Cotton and Its Further Utilization of Zhejiang Key Project of Science and Technology,China(991102310,010007024).
文摘The genetic control of fiber pigment color in naturally colored cotton was studied. The expression of brown and green fiber color was controlled by incompletely dominant single genes and incompletely dominant major genes, respectively. Production and accumulation of the fiber pigment were related to special expression of enzymatic genes for pigment synthesis in fiber cells. At the stage of fiber lengthening, naturally colored cotton, like white cotton, appeared purely white. But when fiber cell walls entered the thickening stage, pigment appeared by degrees. When the fiber was completely matured (on boll dehiscence), the color reached its darkest level. After wetting process treatment, the hues of the fiber pigment changed in regular patterns. The hue circle for brown and green cotton changed in the opposite direction with wetting process treatment. In general, the treated cotton color and luster became dark and vivid, and this trend provided the possibility for enhancing the fiber quality by suitable environmental friendly finishing. The analysis showed that the color and luster of the cotton may be controlled by a series of pigments which show different chemical performance.
文摘Use of environmentally friendly approaches with the purpose of strengthening soil layers along with finding correlations between the mechanical characteristics of fiber-reinforced soils such as indirect tensile strength(ITS)and California bearing ratio(CBR)and as well as the evaluation of shear strength parameters obtained from the triaxial test would be very effective at geotechnical construction sites.This research was aimed at investigating the influence of natural fibers as sustainable ones including basalt(BS)and bagasse(BG)as well as synthetic polyester(PET)fibers on the strength behavior of clayey soil.To this end,the effects of various fiber contents(0.5%,1%and 2%)and lengths(2.5 mm,5 mm and 7.5 mm)were experimentally evaluated.By conducting ITS and CBR tests,it was found that increasing fiber content and length had a significant influence on CBR and ITS values.Moreover,2%of 7.5 mm-long fibers led to the largest values of CBR and ITS.The CBR values of soil reinforced with PET,BS,and BG fibers were determined as 19.17%,15.43%and 13.16%,respectively.The ITS values of specimens reinforced with PET,BS,and BG fibers were reported as 48.57 kPa,60.7 kPa and 47.48 kPa,respectively.The results of the triaxial compression test revealed that with the addition of BS fibers,the internal friction angle increased by about 100%,and with the addition of PET fibers,the cohesion increased by about 70%.Moreover,scanning electron microscope(SEM)analysis was employed to confirm the findings.The relationship between CBR and ITS values,obtained via statistical analysis and used for the optimum design of road pavement layers,demonstrated that these parameters had high correlation coefficients.The outcomes of multiple linear regression and sensitivity analysis also confirmed that the fiber content had a greater effect on CBR and ITS values than fiber length.
文摘A mixture of NaOH and Na2SO3 was used in modification of banana stem fibers (BSF). Unidirectional BSF reinforced natural rubber (NR) lamina composites were made using compression moulding method. The results of the tensile loading in 0°, 45° and 90° to the fiber directions of the composite with fiber mass fraction of 30% were studied. Surface modification of the BSF with a mixture of 4% NaOH and 2% Na2SO3 increased the tensile strength and elastic modulus of the composite to 4.03 MPa and 147.34 MPa respectively from 3.12 MPa and 84.30 MPa of the untreated. Variation in properties due to fiber orintations was observed indicating a higher value of properties in the 0° fiber orientation than in 45° and 90° directions. The result of scanning electron microscope (SEM) micrographs of the surfaces of the fibers indicted an improvement in bonding of the fiber bundles prior to lamination with natural rubber as a result of surface treatment which resulted in its higher tensile strength.
文摘Natural Nanoskin Advance cell therapy (ACT) and Nanoskin ACT Soft have been established to be remarkably versatile biomaterials and can be used in a wide variety of applied scientific endeavors, especially for medical devices. In fact, the structure of Nanoskin materials can be adapted over length scales ranging from nano to macro by controlling the bio-fabrication process. The present paper describes Natural Nanoskin Advanced cell therapy (ACT) and Nanoskin ACT Soft production for wound care applications. ACT is produced from the bio-nanotechnology process. ACT is a highly hydrated pellicle with shaped fibers less than 2 nm wide. Nanoskin ACT Soft, like a paste, is designed to fill irregularities or recesses in the wound bed, and to absorb excess exudate from lesions by prolonging the used dressing's residence time and reducing the frequency of change.
文摘This article contributes to the development of the new class of fully biodegradable “green” composites by combining fibers (natural/bio) with biodegradable resin. The vegetable fibers (Triumfetta cordifolia and sugarcane bagasse) treated with NaOH and bleached were incorporated into a natural rubber matrix. The influence of the fiber ratio on the physical properties, tensile strength and surface hardness of the hybrid composites was analyzed. The results show that the addition of fibers in the natural rubber matrix increases the water absorption capacity but gradually reduces it with increasing fiber ratio. The hybrid composites of the NRT50-50B proportions show the best tensile strengths at 20 phr and a shore A hardness of 43.7 at 30 phr. The combination of two fibers has improved the physical and mechanical properties of the hybrid composites which can be used in engineering applications.
基金financially supported by the National Key R&D Program of China(2017YFD0600802).
文摘In this study,natural bamboo fiber was prepared combining chemical pretreatment with mechanical disc refining,opening,and carding.An orthogonal experiment was designed based on four factors and three levels;thereafter,the manufacturing process was optimized.The length,diameter,tensile strength,and elastic modulus of the bamboo fiber were determined,and the crystallinity and morphology of the fiber were analyzed using X-ray diffraction(XRD)and scanning electron microscopy(SEM).The results showed that the optimum parameters for the chemical pretreatment were a cooking temperature of 130℃,heating time of 2 h,NaOH dosage of 2%,and Na2SO3 dosage of 10%.The cooking yield of bamboo chips was 89.5%,and the carding yield of natural bamboo fiber was 43.0% under the optimum conditions.The length,diameter,tensile strength,and elastic modulus of the obtained fiber were 36.71 mm,0.285 mm,407 MPa,and 27.7 GPa,respectively.XRD analysis and SEM observations showed that the technology used in this study can produce bright and compact natural bamboo fibers with high crystallinity.
基金The authors acknowledge the National Council for Scientific and Technological Development(CNPq),Coordenacao de Aperfeiçoamento de Pessoal de Nivel Superior-Brasil(CAPES)-Finance Code 001Fundacao de AmparoàPesquisa do Estado do Rio de Janeiro(FAPERJ),Brazil.
文摘Natural fiber reinforced polymer composites(NFRCs)have demonstrated great potential for many different applications in various industries due to their advantages compared to synthetic fiber-reinforced composites,such as low environmental impact and low cost.However,one of the drawbacks is that the NFRCs present relatively low mechanical properties and the absorption of humidity due to the hydrophilic characteristic of the natural fibre.One method to increase their performance is hybridization.Therefore,understanding the properties and potential of using multiple reinforcement’s materials to develop hybrid composites is of great interest.This paper provides an overview of the recent advances in hybrid natural fiber reinforced polymer composites.First,the main factors that affect the performance of hybrid fiber-reinforced composites were briefly discussed.The effect of hybridization on the mechanical and thermal properties of hybrid composites reinforced with several types of natural fibers(i.e.,sisal,jute,curauá,ramie,banana,etc.)or natural fibers combined with synthetic fibers is pre-sented.Finally,the water absorption behaviour of hybrid fiber-reinforced composites is also discussed.It was con-cluded that the main challenges that need to be addressed in order to increase the use of natural-natural or natural-synthetic hybrid composites in industry are the poor adhesion between natural fibers and matrix,thermal stability and moisture absorption of natural fibers.Some of these challenges were addressed by recent develop-ment in fibers treatment and modification,and product innovation(hybridization).
文摘In this paper, we deals with mechanical performance of resin impregnation with natural fiber and fiber reinforced composites. The effect of the addition of a rein impregnation process on static strength of the injection molded composites was investigated by carrying out tensile and banding tests, followed by Scanning electron microscopy (SEM) observation of fiber surface and fracture surface of composites. The tensile strength of natural fiber and natural fiber reinforced composites with resin impregnation method increases with Polyvinyl alcohol (PVA) impregnation. In addition, Phenol resin impregnation recovers fiber tensile strength after alkali treatment. Resin impregnation causes decrease in contact surface area;however, it does not cause decrease in mechanical properties. Our results suggest that the using rein impregnation method has better effect on the mechanical properties of natural fiber reinforced Polypropylene (PP) composites.
文摘The potential usage of virgin Low density polyethelyne (LDPE) reinforced with different concentrations (2%, 5% and 6% by weight) of treated rice straw with different lengths (2 mm, 4 mm and 6 mm) is investigated to produce high value products that have technical and environmental demand. The two treatment methods used for rice straw are alkali and acidic treatments of rice straw. The removal of impurities and waxy substances from fiber surface avoid creation of rougher topography after treatment and improves the quality of fiber, also content of hemi cellulose and lignin decrease so increase effectiveness of fiber due to dispersing of fiber in matrix. The reinforcing material is embedded in the matrix material to enhance tensile and flexural behaviors of the synthesized composite. The result of investigating these two mechanical properties, using statistical analysis & design of experiments, showed an enhancement in the mechaniccal properties of the virgin polymer composite compared to the virgin polymer. The flexural stress of the composite increased three times the virgin flexural stress, while the tensile stress increased eight times the original tensile stress.
基金provided through the Putra Grant IPS(GP-IPS/2016/9515100)。
文摘The enforcement on sustainable design and environmental-friendly products has attracted the interest of researchers and engineers in the context of replacing metals and synthetic fibers with natural based fibers,especially in the automotive industry.However,studies on sustainable natural fiber material selection in the automotive industry are limited.Evaluation for the side-door impact beam was conducted by gathering product design specification from literature which amounted to seven criteria and it was forwarded to ten decision makers with automotive engineering and product design background for evaluation.The weightage required for decision-making was obtained using the Analytic Hierarchy Process(AHP)method based on six criteria.Following this,the best natural fiber materials to be used as reinforcement in polymer composites were selected using the VIseKriterijumska Optimizacija I Kompromisno Resenje(VIKOR)method.The results using both the AHP and VIKOR method showed that kenaf was the best natural fiber for the side-door impact beam composites.The result showed the lowest VIKOR value,QA1=0.0000,which was determined to be within the acceptable advantage and acceptable stability conditions.It can be concluded that the application of integrated AHP-VIKOR method resulted in a systematic and justified solution towards the decision-making process.
文摘Natural fibres will take a major role in the emerging “green” economy based on energy efficiency, the use of renewable materials in polymer products, industrial processes that reduce carbon emissions and recyclable materials that minimize waste. Natural fibres are a kind of renewable resources, which have been renewed by nature and human ingenuity for thousands of years. They are also carbon neutral;they absorb the equal amount of carbon dioxide they produce. These fibers are completely renewable, environmental friendly, high specific strength, non-abrasive, low cost, and bio-degradability. Due to these characteristics, natural fibers have recently become attractive to researchers and scientists as an alternative method for fibers reinforced composites. This review paper summarized the history of natural fibers and its applications. Also, this paper focused on different properties of natural fibers (such as hemp, jute, bamboo and sisal) and its applications which were used to substitute glass fiber.
文摘In the present scenario, there has been a rapid attention in research and development in the natural fiber composite field due to its better formability, abundant, renewable, cost-effective and eco-friendly features. This paper exhibits an outline on natural fibers and its composites utilized as a part of different commercial and engineering applications. In this review, many articles were related to applications of natural fiber reinforced polymer composites. It helps to provide details about the potential use of natural fibers and its composite materials, mechanical and physical properties and some of their applications in engineering sectors.
文摘Natural Fiber Honeycomb (NFH) sandwiched structure composite is a type of composite that uses natural fiber as the reinforcement material and honeycomb structure in the form of a sandwich panel. The demand for commercial use of natural fiber-based composites is increasing in the past few years in many industrial sectors. The increase in popularity of natural fibers is because of their particular properties, price, health benefits, and recyclability. This paper aims to analyze the data and analysis of the past research about NFH sandwiched structure composite in terms of the materials used to make the NFH, the physical and mechanical properties, and their applications. Based on the literature review conducted, there were many types of materials used to make the NFH sandwiched structure composite. Some experimental tests were planned and conducted to analyze the mechanical properties of the NFH and its potential to be used in the desired industries. However, there are not many implementations of NFH composite in the construction industry. This is due to the concern related to the issue of the structural integrity of the NFH composite. From the literature review conducted, most of the research shows a positive analysis of the mechanical properties and the potential of the developed NFH to be used for the targeted industry in the study. Therefore, it can be observed that the material used in this study has a high potential to be used in the construction industry.
文摘Nowadays, the use of natural fiber reinforced polymer-based composites is gradually increasing day by day for their many advantages for civil engineering construction applications. Due to their many advantages for polymer-based composite materials are widely used in civil construction, automobiles, aerospace, and many others. Natural fibers such as jute, kenaf, pineapple, sugarcane, hemp, oil palm, flax, and leaf, etc. are cheap, environmentally friendly, renewable, completely and partially biodegradable which can be utilized to obtain new high-performance polymer materials. These composites are having satisfactory mechanical properties (i.e. tensile properties, flexural stress-strain behavior, fracture toughness, and fracture strength) which make them more attractive than other composites. Due to easy availability and renewability, natural fibers can be used as an alternative of synthetic fibers as a reinforcing agent. The aim of this paper is to review different natural fibers reinforced based polymer composites with mechanical characterization, applications, also shows the opportunities, challenges and future demand of natural composite material towards civil applications.
文摘The use of composites in different sectors has become inevitable due to the enhancement in properties, reduction in the manufacturing cost and suitability to several applications. Among different classifications, polymeric composites are mainly focused on their use as structural components and the selection and composition of reinforcement play a vital role in determining the characteristics of the composite. Although composites are developed with man-made reinforcement in the beginning stage, in the present situation, natural reinforcements have proved excellent results in terms of properties. Hence, nowadays researches are mainly focused on the use of different natural fibers in different forms as reinforcements in polymeric composite. This work presents a brief overview on the properties of natural fiber and natural fiber reinforced composites which is an emerging area in polymer science. Interests in natural fiber is reasonable due to the advantages of these materials compared to others, such as synthetic fiber composites, including low environmental impact and low cost and support their potential to be used. Moreover, the disadvantage of the synthetic and fiber-glass as reinforcement, the use of natural fiber reinforced composite gained the attention of the young scientists, researchers, and engineers and are being exploited as a replacement for the conventional fiber such as glass, aramid, carbon etc. Natural fibers have been proven alternative to synthetic fiber in transportation such as automobiles, railway coaches and aerospace, military, building, packaging, consumer products and construction industries for ceiling paneling, partition boards etc. However, in development of these composites, some drawbacks have also emerged. In this paper, it has been tried to overview all of this together.
文摘In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.
文摘Genetic linkage relationship of the natural colored fiber and six fuzzless seed germplasms in obsolete backgrounds of Gossypium hirsutum(AD genome) and G.barbadense were analyzed in the