期刊文献+
共找到7,625篇文章
< 1 2 250 >
每页显示 20 50 100
Research on Automatic Test System of Engine Blade Natural Frequency
1
作者 LU Yonghua LIU Jingjing +2 位作者 YANG Haibo HUANG Chuan MA Zhicheng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期476-487,共12页
Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequ... Blades are one of the important components on aircraft engines.If they break due to vibration failure,the normal operation of the entire engine will be offected.Therefore,it is necessary to measure their natural frequency before installing them on the engine to avoid resonance.At present,most blade vibration testing systems require manual operation by operators,which has high requirements for operators and the testing process is also very cumbersome.Therefore,the testing efficiency is low and cannot meet the needs of efficient testing.To solve the current problems of low testing efficiency and high operational requirements,a high-precision and high-efficiency automatic test system is designed.The testing accuracy of this system can reach ±1%,and the testing efficiency is improved by 37% compared to manual testing.Firstly,the influence of compression force and vibration exciter position on natural frequency test is analyzed by amplitude-frequency curve,so as to calibrate servo cylinder and fourdimensional motion platform.Secondly,the sine wave signal is used as the excitation to sweep the blade linearly,and the natural frequency is determined by the amplitude peak in the frequency domain.Finally,the accuracy experiment and efficiency experiment are carried out on the developed test system,whose results verify its high efficiency and high precision. 展开更多
关键词 BLADE vibration failure natural frequency automatic test system
下载PDF
Numerical Approach to Simulate the Effect of Corrosion Damage on the Natural Frequency of Reinforced Concrete Structures
2
作者 Amthal Hakim Wael Slika +1 位作者 Rawan Machmouchi Adel Elkordi 《Structural Durability & Health Monitoring》 EI 2023年第3期175-194,共20页
Corrosion of reinforcing steel in concrete elements causes minor to major damage in different aspects.It may lead to spalling of concrete cover,reduction of section’s capacity and can alter the dynamic properties.For... Corrosion of reinforcing steel in concrete elements causes minor to major damage in different aspects.It may lead to spalling of concrete cover,reduction of section’s capacity and can alter the dynamic properties.For the dynamic properties,natural frequency is to be a reliable indicator of structural integrity that can be utilized in non-destructive corrosion assessment.Although the correlation between natural frequency and corrosion damage has been reflected in different experimental programs,few attempts have been made to investigate this relationship in forward modeling and/or structural health monitoring techniques.This can be attributed to the limited available data,the complex nature of corrosion,and the involvement of multidisciplinaryfields.Therefore,this study presents a numerical attempt to simulate the effect of corrosion damage on the natural frequency of the structure.The approach relies on simulating the time history response of the structure using a modified Bouc-Wen model that incorporates the nonlinear effects of corrosion.Then,modal analysis is utilized to assess the change in dynamic properties in the frequency domain.Tofinish up,regression algorithms are employed tofind optimal relationship between involved parameters,including corrosion damage as input,and natural frequency as output.The efficiency of the suggested framework is illustrated in thirteen buildings with cantilevered column lateral force-resisting system and different levels of corrosion. 展开更多
关键词 CORROSION concrete damage dynamic properties natural frequency nonlinear analysis modal analysis machine learning
下载PDF
Natural Frequency and Main Vibration Mode Analysis of the Braking System of Metallurgical Crane 被引量:1
3
作者 JIN Yue WANG Mu-ju 《International Journal of Plant Engineering and Management》 2017年第3期163-166,共4页
The safety brake system of metallurgy bridge crane is generally composed of two separated block brake, brake disc, and torsion shaft. The analysis of natural frequency and main vibration mode on this two-degree torsio... The safety brake system of metallurgy bridge crane is generally composed of two separated block brake, brake disc, and torsion shaft. The analysis of natural frequency and main vibration mode on this two-degree torsion vibration system is the basement to study the vibration model and vibration performance. In this work, we investigated natural frequency of the braking system of metallurgical crane with analytic method. This provides a systematic guidance towards a successful brake system design 展开更多
关键词 metallurgical bridge crane VIBRATION natural frequency vibration mode
下载PDF
Calculation,Simulation,and Testing for the Natural Frequency of a Micro Accelerometer 被引量:2
4
作者 熊继军 范波 +1 位作者 郭虎岗 高建飞 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第9期1715-1722,共8页
A calculation and test method for the natural frequency of a high-g micro accelerometer with complex structures is presented. A universal formula for natural frequency, which can significantly simplify the structural ... A calculation and test method for the natural frequency of a high-g micro accelerometer with complex structures is presented. A universal formula for natural frequency, which can significantly simplify the structural design process, is deduced and confirmed by experiment. A simplified analytical model is established to describe the accelerometer's mechanical behavior and deduce the formula for the natural frequency. Finite element modeling is also conducted to evaluate the natural frequency of the micro-accelerometer and verify the formula. The results obtained from the analytical model and the finite element simulation show good agreement. Finally, a shock comparison method designed for acquiring the high frequency characteristics of the accelerometer is introduced to verify the formula by testing its actual natural frequency. 展开更多
关键词 natural frequency micro accelerometer Rayleigh-Ritz formula
下载PDF
Multi-layer quasi-zero-stiffness meta-structure for high-efficiency vibration isolation at low frequency
5
作者 Jiahao ZHOU Jiaxi ZHOU +3 位作者 Hongbin PAN Kai WANG Changqi CAI Guilin WEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第7期1189-1208,共20页
An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us... An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency. 展开更多
关键词 quasi-zero stiffness(QZS) meta-structure high efficiency low frequency vibration isolation
下载PDF
Experimental and numerical study of effecting core configurations on the static and dynamic behavior of honeycomb plate with aluminum material
6
作者 Nehad Abid Allah Hamza Fatima Mohammed K.AL-Fatlwe Muna Ali Talib 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期177-192,共16页
The sandwich panel incorporated a honeycomb core,a widely utilized composite structure recognized as a fundamental classification of composite materials.Comprised a core resembling a honeycomb,possessing thickness and... The sandwich panel incorporated a honeycomb core,a widely utilized composite structure recognized as a fundamental classification of composite materials.Comprised a core resembling a honeycomb,possessing thickness and softness,and is flank by rigid face sheets that sandwich various shapes and materials.This paper presents an examination of the static and dynamic analysis of lightweight plates made of aluminum honeycomb sandwich composites.Honeycomb sandwich plate samples are 300 mm long,and 300 mm wide,the heights of the core have been varied at four values ranging from 10 to 25 mm.The honeycomb core is manufactured from Aluminum material by using a novel technique namely resistance spot welding(RSW)instead of using adhesive material,which is often used when an industrial flaw is detected.Numerical optimization based on response surface methodology(RSM)and design of experiment software(DOE)was used to verify the current work.A theoretical examination of the crashworthiness behavior(maximum bending load,maximum deflection)and vibration attributes(natural frequency,damping ratio,transient temporal response)of honeycomb sandwich panels with different design parameters was also carried out.In addition,the finite element method-based ANSYS software was used to confirm the theoretical conclusions.The findings of the present work showed that the relationship between the natural frequency,core height,and cell size is direct.In contrast,the relationship between the natural frequency and the thickness of the cell wall is inverse.Conversely,the damping ratio is inversely proportional to the core height and cell size but directly proportional to the thickness of the cell wall.The study indicates that altering the core height within 10-25 mm leads to a significant increase of 82%in the natural frequency and a notable decrease of 49%in the damping ratio.These findings are based on a specific cell size value of 0.01 m and a cell wall thickness of 0.001 m.Also,the results indicate that for a given set of cell wall thickness and size values,an increase in core height from(0.01-0.025)m,leads to a reduction of the percentage of maximum response approX imately 76%.Conversely,the increasing thickness of the wall of cell wall,ranging 0.3-0.7 mm with a constant core height equal to 0.015 m,resulted in a de crease of maximum transient response by 7.8%. 展开更多
关键词 HONEYCOMB Load Transient response Free vibration natural frequency
下载PDF
Natural vibration and critical velocity of translating Timoshenko beam with non-homogeneous boundaries
7
作者 Yanan LI Jieyu DING +1 位作者 Hu DING Liqun CHEN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第9期1523-1538,共16页
In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,... In most practical engineering applications,the translating belt wraps around two fixed wheels.The boundary conditions of the dynamic model are typically specified as simply supported or fixed boundaries.In this paper,non-homogeneous boundaries are introduced by the support wheels.Utilizing the translating belt as the mechanical prototype,the vibration characteristics of translating Timoshenko beam models with nonhomogeneous boundaries are investigated for the first time.The governing equations of Timoshenko beam are deduced by employing the generalized Hamilton's principle.The effects of parameters such as the radius of wheel and the length of belt on vibration characteristics including the equilibrium deformations,critical velocities,natural frequencies,and modes,are numerically calculated and analyzed.The numerical results indicate that the beam experiences deformation characterized by varying curvatures near the wheels.The radii of the wheels play a pivotal role in determining the change in trend of the relative difference between two beam models.Comparing the results unearths that the relative difference in equilibrium deformations between the two beam models is more pronounced with smaller-sized wheels.When the two wheels are of equal size,the critical velocities of both beam models reach their respective minima.In addition,the relative difference in natural frequencies between the two beam models exhibits nonlinear variation and can easily exceed 50%.Furthermore,as the axial velocities increase,the impact of non-homogeneous boundaries on modal shape of translating beam becomes more significant.Although dealing with non-homogeneous boundaries is challenging,beam models with non-homogeneous boundaries are more sensitive to parameters,and the differences between the two types of beams undergo some interesting variations under the influence of non-homogeneous boundaries. 展开更多
关键词 translating beam Timoshenko beam non-homogeneous boundary natural frequency critical velocity
下载PDF
Influence of Trailing-Edge Wear on the Vibrational Behavior of Wind Turbine Blades
8
作者 Yuanjun Dai Xin Wei +2 位作者 Baohua Li Cong Wang Kunju Shi 《Fluid Dynamics & Materials Processing》 EI 2024年第2期337-348,共12页
To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experimen... To study the impact of the trailing-edge wear on the vibrational behavior of wind-turbine blades,unworn blades and trailing-edge worn blades have been assessed through relevant modal tests.According to these experiments,the natural frequencies of trailing-edge worn blades-1,-2,and-3 increase the most in the second to fourth order,thefifth order increases in the middle,and thefirst order increases the least.The damping ratio data indi-cate that,in general,thefirstfive-order damping ratios of trailing-edge worn blades-1 and trailing-edge worn blades-2 are reduced,and thefirstfive-order damping ratios of trailing-edge worn blades-3 are slightly improved.The mode shape diagram shows that the trailing-edge worn blades-1 and-2 have a large swing in the tip and the blade,whereas the second-and third-order vibration shapes of the trailing edge-worn blade-3 tend to be improved.Overall,all these results reveal that the blade’s mass and the wear area are the main fac-tors affecting the vibration characteristics of wind turbine blades. 展开更多
关键词 Wind turbine modal test natural frequency damping ratio mode shape
下载PDF
A NEW METHOD FOR FINDING THE NATURAL FREQUENCY SET OF A LINEAR TIME-INVARIANT NETWORK
9
作者 吴雪 孙雨耕 《Transactions of Tianjin University》 EI CAS 1997年第2期28-35,共8页
This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the co... This paper presents a new method for finding the natural frequency set of a linear time invariant network. In the paper deriving and proving of a common equation are described. It is for the first time that in the common equation the natural frequencies of an n th order network are correlated with the n port parameters. The equation is simple and dual in form and clear in its physical meaning. The procedure of finding the solution is simplified and standardized, and it will not cause the loss of roots. The common equation would find wide use and be systematized. 展开更多
关键词 n th order linear time invariant networks natural frequencies n ports
下载PDF
Theoretical Experimental and Studies on the Influence of the Mast Mounted Sight (MMS) on the Dynamic Behavior of the Focal Isolation System (FIS) of Helicopter 被引量:2
10
作者 王荇卫 程伟 +2 位作者 诸德超 黄斌根 凌爱民 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2003年第4期217-222,共6页
This paper presents a theoretical-cum-experimental study on the dynamic behavior of Focal Isolation System of helicopter equipped with Mast Mounted Sight. A new simplified model of FIS/MMS/ Fuselage with 5-Degree of F... This paper presents a theoretical-cum-experimental study on the dynamic behavior of Focal Isolation System of helicopter equipped with Mast Mounted Sight. A new simplified model of FIS/MMS/ Fuselage with 5-Degree of Freedom (DOF) is proposed, where elasticity of the rotor shaft and the support structure of MMS are taken into account. In order to validate this model and make further investigation on MMS, a dummy MMS and its support are fabricated. Frequency and transfer function experiments are carried out on Z-× helicopter. Good correlation between theoretical and experimental results is achieved. A 39% decrease in 1st longitudinal frequency is noticed for FIS when the mass of MMS is 80kg, which is only 12% of the mass to be isolated. The elasticity of rotor shaft has great influence (403%) on the isolation efficiency of fuselage for prototype. 展开更多
关键词 frequency MMS focal isolation system HELICOPTER
下载PDF
Theoretical analysis of natural frequency of externally prestressed concrete beam based on rigidity correction 被引量:3
11
作者 Hui-xia Xiong1,2, Yao-ting Zhang11.School of Civil Engineering & Mechanics, Huazhong University of Science and Technology, Wuhan 430074, China 2.Department of Civil Engineering, Nanyang Institute of Technology, Nanyang 473004, China. 《Journal of Pharmaceutical Analysis》 SCIE CAS 2009年第1期31-35,共5页
A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase w... A dynamic test on externally prestressed simply supported concrete beams separately with three typical types of tendon distributions was conducted. The results show that the natural frequencies of the beams increase with the increase in the prestressing force at the tensioning stage, and the natural frequencies decrease after the cracks occur in the beams. Following the calculation formula of natural frequency of externally prestressed beam, which was reported in a literature, the natural frequencies of the experimental beams are calculated, and big errors are found between the test results and the calculated ones of natural frequency values. As a result, this paper has tried to adopt two methods to correct the rigidity parameter of the concrete beam in the formula for natural frequency calculation, and to use the corrected formula to calculate the frequencies of the experimental beams. The calculation results indicate a good consistency with the experimental ones, which verifies the feasibility of the corrected formula. 展开更多
关键词 externally prestressed concrete beam natural frequency rigidity correction regression analysis
下载PDF
Optimization of Bearing Locations for Maximizing First Mode Natural Frequency of Motorized Spindle-Bearing Systems Using a Genetic Algorithm 被引量:4
12
作者 Chi-Wei Lin 《Applied Mathematics》 2014年第14期2137-2152,共16页
This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First... This paper has developed a genetic algorithm (GA) optimization approach to search for the optimal locations to install bearings on the motorized spindle shaft to maximize its first-mode natural frequency (FMNF). First, a finite element method (FEM) dynamic model of the spindle-bearing system is formulated, and by solving the eigenvalue problem derived from the equations of motion, the natural frequencies of the spindle system can be acquired. Next, the mathematical model is built, which includes the objective function to maximize FMNF and the constraints to limit the locations of the bearings with respect to the geometrical boundaries of the segments they located and the spacings between adjacent bearings. Then, the Sequential Decoding Process (SDP) GA is designed to accommodate the dependent characteristics of the constraints in the mathematical model. To verify the proposed SDP-GA optimization approach, a four-bearing installation optimazation problem of an illustrative spindle system is investigated. The results show that the SDP-GA provides well convergence for the optimization searching process. By applying design of experiments and analysis of variance, the optimal values of GA parameters are determined under a certain number restriction in executing the eigenvalue calculation subroutine. A linear regression equation is derived also to estimate necessary calculation efforts with respect to the specific quality of the optimization solution. From the results of this illustrative example, we can conclude that the proposed SDP-GA optimization approach is effective and efficient. 展开更多
关键词 Optimal DESIGN Motorized SPINDLE system DESIGN Finite Element Method Genetic Algorithm FIRST MODE natural frequency
下载PDF
Gravity Effect on the First Natural Frequency of Offshore Wind Turbine Structures 被引量:1
13
作者 Ma Hongwang Chen Longzhu 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第1期95-101,共7页
The fatigue limit state is critical for most offshore wind turbine.To minimize the development of fatigue damage,dynamic amplification of the response must be avoided.Thus,it is important to ensure that the first natu... The fatigue limit state is critical for most offshore wind turbine.To minimize the development of fatigue damage,dynamic amplification of the response must be avoided.Thus,it is important to ensure that the first natural frequency of the offshore wind turbine does not coincide with the excitation frequencies related to wind turbine and wave loadings.For evaluating the self-gravity influence on the first natural frequency of wind turbine support structures,the offshore wind turbine system vibration is modeled using an Euler-Bernoulli beam with axial force and horizontal force.Real data from five wind turbines available in the market are considered.The sizes of wind turbines vary from 2.3MW to 6MW,and subsequently,the heights of tubular steel towers vary from 83 mto 100m.Results indicate that the average influence of gravity on the first natural frequency is nearly 1.8%.The first natural frequency is considered ranging from 1P(rototor frequency)to 3P(blade passing frequency).The design procedure requires an accurate evaluation of the first natural frequency.From this perspective,the first natural frequency is reduced since gravity needs to be considered for the design of offshore wind turbine support structures,especially when the first natural frequency of the offshore wind turbine is close to the lower limit,rotor frequency1 P. 展开更多
关键词 offshore wind turbine the first natural frequency GRAVITY Euler-Bernoulli beam
下载PDF
Experimental and theoretical analysis on the natural frequency of external prestressed concrete beams 被引量:1
14
作者 熊辉霞 《Journal of Chongqing University》 CAS 2008年第4期317-323,共7页
Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of exte... Analyses and computations of the natural frequencies of external prestressed concrete structures are the bases for studying the dynamic properties of such structures. We carded out dynamic tests on three types of external simply supported beams, pulling the beams gradually. Then vertical loads were applied to the beams while the frequencies and related coefficients were measured at every step. We calculated natural frequencies and the results indicate that natural frequencies increase as the prestressing force rises in the pre-crack stage, and decrease significantly during the post-crack stage. Substantial incoincidences exist between the calculated and experimental results for the frequency and its tendency to changel Based on the experimental results, we modified the stiffness and other parameters in the equations. The results calculated using the modified equations agree with experimental results well, so the modified eauations can be used nractically. 展开更多
关键词 natural frequency external prestressed concrete beams dynamic property stiffness modification
下载PDF
The Effect of Pivot Bearing Assembly Process on Natural Frequency of Actuator Arm
15
作者 Khosak Achawakorn Thira Jearsiripongkul +1 位作者 Sarawut Suksawat Krairoek Fanchaeng 《Journal of Energy and Power Engineering》 2013年第2期301-305,共5页
This paper presents the study of vibration in each element of hard disk drive, especially the resonance of the actuator arm. The resonance occurs in hard disk drive is considered as one of the quality controlled param... This paper presents the study of vibration in each element of hard disk drive, especially the resonance of the actuator arm. The resonance occurs in hard disk drive is considered as one of the quality controlled parameter. The main purpose of the research is to investigate the relationship between the pivot bearing assembly process and the natural frequency of the actuator arm. The experiment is designed using the information from the hard disk drive manufacturer. The selected pivot bearing assembly process parameters have been controlled. The modal analysis of the assembled actuator arms has been done. The experiment results show the relationship of the specific process parameters and some of the actuator arm's modal frequency. The results also show that the affected vibration mode is the torsion mode only. 展开更多
关键词 Pivot bearing actuator arm tolerance ring natural frequency.
下载PDF
A New Method for Calculation of Natural Frequency of Suspended Pipeline 被引量:1
16
作者 鲁晓光 唐友刚 郑治国 《Transactions of Tianjin University》 EI CAS 2002年第4期282-284,共3页
The buried pipelines are widely used in oil transportation. The pipelines become suspended in the river with flushing of floodwater. If the frequency of vortex shedding is near to the nature frequency of pipelines, it... The buried pipelines are widely used in oil transportation. The pipelines become suspended in the river with flushing of floodwater. If the frequency of vortex shedding is near to the nature frequency of pipelines, it will cause resonance of the suspended pipeline and result in the damage of pipelines. In this paper, the buried parts of pipeline in soil are treated as the half unlimited long beam placed on the elastic foundations. The vibration partial differential equations of suspended pipe and the parts buried in soil are derived respectively. The iterative calculation method is then presented. The results obtained from the suggested method are proved to be identical with the measured values. 展开更多
关键词 suspended pipeline half unlimited long beam natural frequency
下载PDF
Vibration and sound transmission loss characteristics of porous foam functionally graded sandwich panels in thermal environment 被引量:3
17
作者 Wenhao YUAN Haitao LIAO +1 位作者 Ruxin GAO Fenglian LI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第6期897-916,共20页
This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Ham... This study investigates the vibration and acoustic properties of porous foam functionally graded(FG)plates under the influence of the temperature field.The dynamics equations of the system are established based on Hamilton's principle by using the higher-order shear deformation theory under the linear displacement-strain assumption.The displacement shape function is assumed according to the four-sided simply-supported(SSSS)boundary condition,and the characteristic equations of the system are derived by combining the motion control equations.The theoretical model of vibro-acoustic coupling is established by using the acoustic theory and fluid-structure coupling solution method under the simple harmonic acoustic wave.The system's natural frequency and sound transmission loss(STL)are obtained through programming calculations and compared with the literature and COMSOL simulation to verify the validity and reliability of the theoretical model.The effects of various factors,such as temperature,porosity coefficients,gradient index,core thickness,width-to-thickness ratio on the vibration,and STL characteristics of the system,are discussed.The results provide a theoretical basis for the application of porous foam FG plates in engineering to optimize vibration and sound transmission properties. 展开更多
关键词 porous foam functionally graded(FG)plate thermal environment natural frequency sound transmission loss(STL)
下载PDF
Active Low-frequency Vertical Vibration Isolation System for Precision Measurements 被引量:5
18
作者 WU Kang LI Gang +1 位作者 HU Hua WANG Lijun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2017年第1期164-169,共6页
Low-fi'equency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been de... Low-fi'equency vertical vibration isolation systems play important roles in precision measurements to reduce seismic and environmental vibration noise. Several types of active vibration isolation systems have been developed. However, few researches focus on how to optimize the test mass install position in order to improve the vibration transmissibility. An active low-frequency vertical vibration isolation system based on an earlier instrument, the Super Spring, is designed and implemented. The system, which is simple and compact, consists of two stages: a parallelogram-shaped linkage to ensure vertical motion, and a simple spring-mass system. The theoretical analysis of the vibration isolation system is presented, including terms erroneously ignored before. By carefully choosing the mechanical parameters according to the above analysis and using feedback control, the resonance frequency of the system is reduced from 2.3 to 0.03 Hz, a reduction by a factor of more than 75. The vibration isolation system is installed as an inertial reference in an absolute gravimeter, where it improved the scatter of the absolute gravity values by a factor of 5. The experimental results verifies the improved performance of the isolation system, making it particularly suitable for precision experiments. The improved vertical vibration isolation system can be used as a prototype for designing high-performance active vertical isolation systems. An improved theoretical model of this active vibration isolation system with beam-pivot configuration is proposed, providing fundamental guidelines for vibration isolator design and assembling. 展开更多
关键词 vibration isolation VERTICAL low frequency ACTIVE
下载PDF
Determination of the natural frequencies of axially moving beams by the method of multiple scales 被引量:3
19
作者 杨晓东 陈立群 《Journal of Shanghai University(English Edition)》 CAS 2007年第3期251-254,共4页
The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial mot... The natural frequencies of an axially moving beam were determined by using the method of multiple scales. The method of second-order multiple scales could be directly applied to the governing equation if the axial motion of the beam is assumed to be small. It can be concluded that the natural frequencies affected by the axial motion are proportional to the square of the velocity of the axially moving beam. The results obtained by the perturbation method were compared with those given with a numerical method and the comparison shows the correctness of the multiple-scale method if the velocity is rather small. 展开更多
关键词 the method of multiple scales natural frequency axially moving beam
下载PDF
Frequency domain analysis of pre-stressed elastomeric vibration isolators
20
作者 S.Somanath R.Marimuthu Shankar Krishnapillai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第7期33-47,共15页
Two types of elastomeric vibration isolators used for equipment vibration isolation in aerospace vehicles are considered for the present study. These isolators are constructed using elastomers mounted in steel encasin... Two types of elastomeric vibration isolators used for equipment vibration isolation in aerospace vehicles are considered for the present study. These isolators are constructed using elastomers mounted in steel encasings. These isolators are initially deformed statically and dynamic loads are applied on the deformed configuration. To capture the static deformation, equivalent static load corresponding to its load rating and specified displacements are created. Static deformation is computed using Finite Element methods with four node axi-symmetric element which include the geometric non-linear effect for steel and with standard Yeoh hyper-elastic material model for elastomers(Muhammed and Zu, 2012) [1]. Yeoh material constants are derived from uni-axial tension test data of the elastomer specimen. These isolators are subjected to harmonic and random excitations in the pre-deformed state. For numerical analysis, elastomeric constants at dynamic conditions are obtained as complex function of frequency using Dynamic Mechanical Analyzer(DMA) for a range of frequencies. The standard material model of Yeoh is modified incorporating frequency dependant material characteristics and damping in the range of frequencies of interest. A multiplicative non-separable variables law is derived for Yeoh material model to include the effect of static pre-stress, based on the methodology given in literature(Nashif et al.,1985;Beda et al., 2014) [2,3]. The modifications of Yeoh model suitable for frequency domain analysis is the novelty in the present study. In the analysis, while dynamic loads are applied, the configuration is updated considering initial static loading. The frequency response of the isolators is computed using material properties evaluated at progressive dynamic strains until a match in natural frequency is observed. Appropriate damping corrections are then incorporated to match the test observed transmissibility. Then updated material properties are used to compute the random response which showed good agreement with results of experiments, validating the approach taken for the development of this model. 展开更多
关键词 ELASTOMER ISOLATOR Axi-symmetric frequency Random Response Strain amplitude Complex modulus TRANSMISSIBILITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部