Urban natural gas is becoming the main sector driving China’s natural gas consumption growth in recent years.This study explores the impacts of urban natural gas price,wage,socioeconomic determinants,and meteorologic...Urban natural gas is becoming the main sector driving China’s natural gas consumption growth in recent years.This study explores the impacts of urban natural gas price,wage,socioeconomic determinants,and meteorological conditions on urban natural gas demand in China over 2006-2017.Furthermore,this study also analyzes the potential regional heterogeneity and asymmetry in the impacts of gas price and income on China’s urban gas demand.Empirical results reveal that:(1)The increased gas price can significantly reduce the urban gas demand,and the average income level may effectively promote the gas demand,also,a strong switching effect exists between electricity and natural gas in urban China;(2)these impacts are heterogeneous in regions among China,urban natural gas demand is largely affected by the gas price in regions with high-gas-price and by income in regions with low-gas-price;and(3)the impact of gas price on urban gas consumption is consistent in regions with different urban natural gas consumption,while the impact of income is asymmetric.This study further provides several policy implications for improving the urban natural gas industry in China.展开更多
China natural gas industry is at a turning point. Growth of mid-long term natural gas consumption may maintain at about 10%, supply is sufficient or even "over-sufficient", natural gas price will be determin...China natural gas industry is at a turning point. Growth of mid-long term natural gas consumption may maintain at about 10%, supply is sufficient or even "over-sufficient", natural gas price will be determined by competition, oil and gas pipeline facilities will be opened fairly, and private enterprises will play important roles in natural gas exploration, development, storage, transportation, and trade. It can been foreseen that China natural gas industry is very likely to take a turn in next 10 years, and a modern natural gas market with consumption about 500 billion cubic meters will come into being characterized by complete supervision system, diversified market, steady supply, fairly opened pipelines, transparent trading mechanism, and competitive prices.展开更多
This paper aims to optimize total energy costs in an operational model of a novel energy hub(EH) in a residential area. The optimization problem is set up based on daily load demand(such as electricity, heat, and cool...This paper aims to optimize total energy costs in an operational model of a novel energy hub(EH) in a residential area. The optimization problem is set up based on daily load demand(such as electricity, heat, and cooling) and time-of-use(TOU) energy prices. The extended EH model considers the involvement of solar photovoltaic(PV) generation, solar heat exchanger(SHE), and a battery energy storage system(BESS). A mathematical model is constructed with the objective of optimizing total energy cost during the day, including some constraints such as input-output energy balance of the EH, electricity price,capacity limitation of the system, and charge/discharge power of BESS. Four operational cases based on different EH structures are compared to assess the effect of solar energy applications and BESS on the operational efficiency. The results show that the proposed model predicts significant changes to the characteristics of electricity and gas power bought from utilities, leading to reduced total energy cost compared to other cases. They also indicate that the model is appropriate for the characteristics of residential loads.展开更多
This study proposes an optimized model of a micro-energy network(MEN)that includes electricity and natural gas with integrated solar,wind,and energy storage systems(ESSs).The proposed model is based on energy hubs(EHs...This study proposes an optimized model of a micro-energy network(MEN)that includes electricity and natural gas with integrated solar,wind,and energy storage systems(ESSs).The proposed model is based on energy hubs(EHs)and it aims to minimize operation costs and greenhouse emissions.The research is motivated by the increasing use of renewable energies and ESSs for secure energy supply while reducing operation costs and environment effects.A general algebraic modeling system(GAMS)is used to solve the optimal operation problem in the MEN.The results demonstrate that an optimal MEN formed by multiple EHs can provide appropriate and flexible responses to fluctuations in electricity prices and adjustments between time periods and seasons.It also yields significant reductions in operation costs and emissions.The proposed model can contribute to future research by providing a more efficient network model(as compared with the traditional electricity supply system)to scale down the environmental and economic impacts of electricity storage and supply systems on MEN operation.展开更多
基金supported by the National Social Science Foundation of China(Grant No.20VGQ003)。
文摘Urban natural gas is becoming the main sector driving China’s natural gas consumption growth in recent years.This study explores the impacts of urban natural gas price,wage,socioeconomic determinants,and meteorological conditions on urban natural gas demand in China over 2006-2017.Furthermore,this study also analyzes the potential regional heterogeneity and asymmetry in the impacts of gas price and income on China’s urban gas demand.Empirical results reveal that:(1)The increased gas price can significantly reduce the urban gas demand,and the average income level may effectively promote the gas demand,also,a strong switching effect exists between electricity and natural gas in urban China;(2)these impacts are heterogeneous in regions among China,urban natural gas demand is largely affected by the gas price in regions with high-gas-price and by income in regions with low-gas-price;and(3)the impact of gas price on urban gas consumption is consistent in regions with different urban natural gas consumption,while the impact of income is asymmetric.This study further provides several policy implications for improving the urban natural gas industry in China.
文摘China natural gas industry is at a turning point. Growth of mid-long term natural gas consumption may maintain at about 10%, supply is sufficient or even "over-sufficient", natural gas price will be determined by competition, oil and gas pipeline facilities will be opened fairly, and private enterprises will play important roles in natural gas exploration, development, storage, transportation, and trade. It can been foreseen that China natural gas industry is very likely to take a turn in next 10 years, and a modern natural gas market with consumption about 500 billion cubic meters will come into being characterized by complete supervision system, diversified market, steady supply, fairly opened pipelines, transparent trading mechanism, and competitive prices.
基金supported by National Natural Science Foundation of China(No.51377060)
文摘This paper aims to optimize total energy costs in an operational model of a novel energy hub(EH) in a residential area. The optimization problem is set up based on daily load demand(such as electricity, heat, and cooling) and time-of-use(TOU) energy prices. The extended EH model considers the involvement of solar photovoltaic(PV) generation, solar heat exchanger(SHE), and a battery energy storage system(BESS). A mathematical model is constructed with the objective of optimizing total energy cost during the day, including some constraints such as input-output energy balance of the EH, electricity price,capacity limitation of the system, and charge/discharge power of BESS. Four operational cases based on different EH structures are compared to assess the effect of solar energy applications and BESS on the operational efficiency. The results show that the proposed model predicts significant changes to the characteristics of electricity and gas power bought from utilities, leading to reduced total energy cost compared to other cases. They also indicate that the model is appropriate for the characteristics of residential loads.
基金This work was supported by the National Natural Science Foundation of China(No.51777077)Thai Nguyen University of Technology(TNUT),Thai Nguyen,Vietnam.
文摘This study proposes an optimized model of a micro-energy network(MEN)that includes electricity and natural gas with integrated solar,wind,and energy storage systems(ESSs).The proposed model is based on energy hubs(EHs)and it aims to minimize operation costs and greenhouse emissions.The research is motivated by the increasing use of renewable energies and ESSs for secure energy supply while reducing operation costs and environment effects.A general algebraic modeling system(GAMS)is used to solve the optimal operation problem in the MEN.The results demonstrate that an optimal MEN formed by multiple EHs can provide appropriate and flexible responses to fluctuations in electricity prices and adjustments between time periods and seasons.It also yields significant reductions in operation costs and emissions.The proposed model can contribute to future research by providing a more efficient network model(as compared with the traditional electricity supply system)to scale down the environmental and economic impacts of electricity storage and supply systems on MEN operation.